Skip to main content
Log in

Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AS:

available starch

DE:

dextrose equivalents

GI:

glycemic index

IS:

indigestible starch

IDF:

insoluble dietary fiber

LMWRM:

low molecular weight resistant maltodextrin

RM:

enzymatically resistant maltodextrins

RS:

resistant starch

SDF:

soluble dietary fiber

TDF:

total dietary fiber

TS:

total starch

References

  1. Sajilata M, Singhal RS, Kulkarni PR (2006) Resistant starch- a review. Compr Rev Food Sci Food Saf 5:1–17. doi:10.1111/j.1541-4337.2006.tb00076.x

    Article  CAS  Google Scholar 

  2. Gray J (2006) Dietary fibre: definition, analysis, physiology and health. International Life Science Institute. Europe Concise Monograph Series, Brussels, pp 1–44

    Google Scholar 

  3. Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95:1968–1978. doi:10.1002/jsfa.6966

    Article  CAS  Google Scholar 

  4. Nugent A (2005) Health properties of resistant starch. Nutr Bull 30:27–54. doi:10.1111/j.1467-3010.2005.00481.x

    Article  Google Scholar 

  5. Fakir MSA, Jannat M, Mostafa MG, Seal H (2012) Starch and flour extraction and nutrient composition of tuber in seven cassava accesions. J Bang Agric Univ 10(2):217–222. doi:10.3329/jbau.v10i2.14698

    Google Scholar 

  6. Novelo-Cen L, Betancur-Ancona D (2005) Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends. Starch/Stärke 57(9):431–441

    Article  CAS  Google Scholar 

  7. Livesey G, Tagami H (2009) Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): meta-analysis of randomized controlled trials. Am J Clin Nutr 89:114–112

    Article  CAS  Google Scholar 

  8. Fuentes E, Sánchez E, Sendra E, Sayas E, Navarro C, Fernández J, Pérez J (2011) Resistant starch as prebiotic: a review. Starch/Stärke 63:406–415

    Article  Google Scholar 

  9. Fuller S, Beck E, Salman H, Tapsell L (2016) New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 71:1–12

    Article  CAS  Google Scholar 

  10. Ohkuma K, Wakabayashi S (2001) Fibersol-2: a soluble, non-digestible, starch-derived dietary fibre. In: McCleary B, Prosky L (eds) Advanced dietary fibre technology. Wiley-Blackwell, New Jersey, pp 509–524

  11. Hofman DL, van Buul VJ, Brouns F (2016) Nutrition, health, and regulatory aspects of digestible maltodextrins. Crit Rev Food Sci Nutr 56(12):2091–2100. doi:10.1080/10408398.2014.940415

    Article  CAS  Google Scholar 

  12. Orozco-Martínez T, Betancur-Ancona D (2004) Indigestible starch of P. lunatus obtained by pyroconversion: changes in physicochemical properties. Starch/Stärke 56:241–247

  13. Campechano-Carrera E, Corona-Cruz A, Chel-Guerrero L, Betancur-Ancona D (2007) Effect of pyrodextrinization on available starch content of lima bean (Phaseolus lunatus) and cowpea (Vigna unguiculata) starches. Food Hydrocoll 21:472–479

    Article  CAS  Google Scholar 

  14. Wang Y, Wang L (2000) Structures and properties of commercial maltodextrins from corn, potato, and rice starches. Starch/Stärke 52:296–304

    Article  CAS  Google Scholar 

  15. Tovar J (1996) Bioavailability of carbohydrates in legumes. Digestible and indigestible fractions. Arch Latinoam Nutr 44(4 Suppl 1):36S–40S

    CAS  Google Scholar 

  16. Holm J, Björck I, Drews A, Asp NG (1986) A rapid method for the analysis of starch. Starch/Stärke 38:224–226

    Article  CAS  Google Scholar 

  17. AOAC (2006) Association of Official Analytical Chemists. Official method 2001.03 Dietary fiber containing supplemented resistant maltodextrin (RMD). Gaithersburg

  18. AOAC (2005) Association of Official Analytical Chemists. Official method 985.29 Total dietary fiber in foods-enzymatic gravimetric method. Gaithersburg

  19. AOAC (2010) Association of Official Analytical Chemists. Official method 2009.01 Total dietary fiber in foods- enzymatic gravimetric liquid chromatographic method. Gaithersburg

  20. Sathe SK, Salunkhe DK (1981) Isolation, partial characterization and modification of the great northern bean (Phaseolus vulgaris) starch. J Food Sci 46(4):617–621

    Article  CAS  Google Scholar 

  21. Granfeldt Y, Bjorck I (1991) Glycemic response to starch in pasta: a study of mechanisms of limited enzyme availabilty. J Cereal Sci 14:47–61

    Article  Google Scholar 

  22. Jochym K, Kapusniak J, Barczynska R, Slizewska K (2011) New starch preparations resistant to enzymatic digestion. J Sci Food Agric 92(4):886–891

    Article  Google Scholar 

  23. Wang Y, Kozlowski R, Delgado GA (2001) Enzyme resistant dextrins from high amylose corn mutant starches. Starch/Stärke 53:21–26

    Article  CAS  Google Scholar 

  24. Brumovsky LA, Brumovsky JO, Fretes MR, Peralta JM (2009) Quantification of resistant starch in several starch sources treated thermally. Int J Food Prop 12:451–460

    Article  Google Scholar 

  25. Kapuśniak J, Jane J (2007) Preparation and characteristics of enzyme resistant pyrodextrins from corn starch. Polish J Food Nutr Sci 57(4B):261–265 ICID: 850262

    Google Scholar 

  26. Slavin JL, Savarino V, Paredes-Diaz A, Fotopoulos G (2009) A review of the role of soluble fiber in health with specific reference to wheat dextrin. J Int Med Res 37:1–17

    Article  CAS  Google Scholar 

  27. Kanellos PT, Kaliora AC, Liaskos C, Tentolouris NK, Perrea D, Karathanos VT (2013) A study of glycemic response to corinthian raisins in healthy subjects and in type 2 diabetes mellitus patients. Plant Foods Hum Nutr 68:145–148. doi:10.1007/s11130-013-0348-y

    Article  CAS  Google Scholar 

  28. Whelan WJ (2008) The wars of carbohydrates, part 6: what a name! IUBMB Life 60:555–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Betancur-Ancona.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights

Glycemic index procedure was conducted in accordance with the guidelines of the Declaration of Helsinki, 2013 (World Medical Association). All procedures performed were in accordance with the ethical standards of the Autonomous University of Yucatan. This article does not contain any studies with animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toraya-Avilés, R., Segura-Campos, M., Chel-Guerrero, L. et al. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch. Plant Foods Hum Nutr 72, 149–155 (2017). https://doi.org/10.1007/s11130-017-0599-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-017-0599-0

Keywords

Navigation