Skip to main content
Log in

Effects of Cooking Methods on Phenolic Compounds in Xoconostle (Opuntia joconostle)

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20 % reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13  and 20 %, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2, 2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

BCBA:

β-Carotene bleaching assay

CE:

Catechin equivalents

DPPH:

2, 2-Diphenyl-1-picrylhydrazyl

DWB:

Dry weight basis

EC50 :

Half-maximal effective concentration

GAE:

Gallic acid equivalents

Rt:

Retention time

TE:

Trolox (6-hydroxy-2, 5, 7, 8-tetramethychroman-2-carboxylicacid) equivalents

TFC:

Total flavonoid content

TPC:

Total phenolic content

References

  1. Feugang JM, Konarski P, Daming Z et al (2006) Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci 11(1):2574–2589

    Article  CAS  Google Scholar 

  2. Reyes-Agüero JA, Aguirre-Rivera R, Hernández H (2005) Systematyc notes and a detailed description of O. ficus-indica (L) Mill. (Cactaceae). Agrociencia 39(4):395–408

    Google Scholar 

  3. Osorio-Esquivel O, Ortiz-Moreno A, Álvarez V et al (2011) Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res Int 44(7):2160–2168

  4. Gallegos-Vázquez C, Scheinvar L, Núñez-Colín CA, Mondragón-Jacobo (2012) Morphological diversity of xoconostles (Opuntia spp.) or acidic cactus pears: a Mexican contribution to functional foods. Fruits 67(02):109–120

    Article  Google Scholar 

  5. Guzmán-Maldonado SH, Morales-Montelongo AL, Mondragón-Jacobo C et al (2010) Physicochemical, nutritional, and functional characterization of fruits xoconostle (Opuntia matudae) pears from central-México region. J Food Sci 75(6):C485–C492

    Article  Google Scholar 

  6. Osorio-Esquivel O, Ortiz-Moreno A, Garduño-Siciliano L et al (2012) Antihyperlipidemic effect of methanolic extract from Opuntia joconostle seeds in mice fed a hypercholesterolemic diet. Plant Foods Hum Nutr 67(4):365–370

  7. Patel S (2013) Reviewing the prospects of Opuntia pears as low cost functional foods. Rev Environ Sci Biotechnol 12(3):223–234

    Article  Google Scholar 

  8. Pimienta-Barrios E, Méndez-Morán L, Ramírez-Hernández B et al (2008) Efecto de la ingestión del fruto de xoconostle (O. joconostle Web.) sobre la glucosa y lípidos séricos. Agrociencia 42:645–653

    Google Scholar 

  9. Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Peralta RM (2012) Phenolic compounds in fruits – an overview. Int J Food Sci Technol 47(10):2023–2044

    Article  CAS  Google Scholar 

  10. van Boekel M, Fogliano V, Pellegrini N et al (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54(9):1215–1247

    Article  Google Scholar 

  11. Tiwari U, Cummins E (2013) Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res Int 50(2):497–506

    Article  CAS  Google Scholar 

  12. Morales P, Ramírez-Moreno E, Sanchez-Mata MC et al (2012) Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (O. joconostle F.A.C. Weber ex Diguet and O. matudae Scheinvar) of high consumption in Mexico. Food Res Int 46(1):279–285

    Article  CAS  Google Scholar 

  13. Ferracane R, Pellegrini N, Visconti A et al (2008) Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J Agric Food Chem 56(18):8601–8608

    Article  CAS  Google Scholar 

  14. Fernández-López J, Almela L, Obón J, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Foods Hum Nutr 65(3):253–259

    Article  Google Scholar 

  15. Ozgen M, Reese RN, Tulio AZ et al (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54(4):1151–1157

    Article  CAS  Google Scholar 

  16. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem-Biol Interact 174(1):27–37

    Article  CAS  Google Scholar 

  17. Turkmen N, Sari F, Velioglu YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93(4):713–718

    Article  CAS  Google Scholar 

  18. Miglio C, Chiavaro E, Visconti A et al (2007) Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J Agric Food Chem 56(1):139–147

  19. Chuah AM, Lee Y-C, Yamaguchi T et al (2008) Effect of cooking on the antioxidant properties of coloured peppers. Food Chem 111(1):20–28

    Article  CAS  Google Scholar 

  20. Stewart AJ, Bozonnet S, Mullen W et al (2000) Occurrence of flavonols in tomatoes and tomato-based products. J Agr Food Chem 48(7):2663–2669

    Article  CAS  Google Scholar 

  21. Roy MK, Juneja LR, Isobe S, Tsushida T (2009) Steam processed broccoli (Brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems. Food Chem 114(1):263–269

    Article  CAS  Google Scholar 

  22. Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation—structural and chromatic aspects. J Food Sci 71(4):R41–R50

    Article  CAS  Google Scholar 

  23. Sanchez-Gonzalez N, Jaime-Fonseca MR, San Martin-Martinez E, Zepeda LG (2013) Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J Agric Food Chem 61(49):11995–12004

    Article  CAS  Google Scholar 

  24. Wong SP, Leong LP, William Koh JH (2006) Antioxidant activities of aqueous extracts of selected plants. Food Chem 99(4):775–783

    Article  CAS  Google Scholar 

  25. Palermo M, Pellegrini N, Fogliano V (2014) The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric 94(6):1057–1070

    Article  CAS  Google Scholar 

  26. Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45(2):216–224

    Article  CAS  Google Scholar 

  27. López-Berenguer C, Carvajal M, Moreno DA, García-Viguera C (2007) Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences. J Agric Food Chem 55(24):10001–10007

  28. Vadivambal R, Jayas DS (2007) Changes in quality of microwave-treated agricultural products—a review. Biosyst Eng 98(1):1–16

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly funded by CONACyT scholarship no. 237260, Secretaria de Investigación y Posgrado-IPN Proyect Number 20130428.

Conflict of Interest

The authors declare that they have no conflict ofinterest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Ortiz-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez-García, R.M., Ortiz-Moreno, A., Zepeda-Vallejo, L.G. et al. Effects of Cooking Methods on Phenolic Compounds in Xoconostle (Opuntia joconostle). Plant Foods Hum Nutr 70, 85–90 (2015). https://doi.org/10.1007/s11130-014-0465-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-014-0465-2

Keywords

Navigation