Skip to main content
Log in

Nonlocality threshold for entanglement under general dephasing evolutions: a case study

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  4. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  5. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  6. Rivas, Á., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  9. Ladd, T.D., et al.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  10. Schliemann, J., Cirac, J.I., Kus, M., Lewenstein, M., Loss, D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64, 022303 (2001)

    Article  ADS  Google Scholar 

  11. Xu, J.-S., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  12. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2015)

    Article  MathSciNet  Google Scholar 

  13. Orieux, A., et al.: Experimental on-demand recovery of quantum entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  14. Mazzola, L., Bellomo, B., Lo Franco, R., Compagno, G.: Connection among entanglement, mixedness and nonlocality in a dynamical context. Phys. Rev. A 81, 052116 (2010)

    Article  ADS  Google Scholar 

  15. Horst, B., Bartkiewicz, K., Miranowicz, A.: Two-qubit mixed states more entangled than pure states: comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A 87, 042108 (2013)

    Article  ADS  Google Scholar 

  16. Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)

    Article  ADS  Google Scholar 

  17. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  18. Gisin, N., Thew, R.: Quantum communication. Nat. Photon 1, 165 (2007)

    Article  ADS  Google Scholar 

  19. Lo Franco, R., D’Arrigo, A., Falci, G., Compagno, G., Paladino, E.: Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    Article  ADS  Google Scholar 

  20. Addis, C., Brebner, G., Haikka, P., Maniscalco, S.: Coherence trapping and information backflow in dephasing qubits. J. Phys. Rev. A 89, 024101 (2014)

    Article  ADS  Google Scholar 

  21. Bellomo, B., Lo Franco, R., Compagno, G.: An optimized Bell test in a dynamical system. Phys. Lett. A 374, 3007 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Horodecki, M., Horodecki, P., Horodecki, R.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. J. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  24. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  25. Derkacz, L., Jakóbczyk, L.: Clauser–Horne–Shimony–Holt violation and the entropy-concurrence plane. Phys. Rev. A 72, 042321 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. Verstraete, F., Wolf, M.M.: Entanglement versus Bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002)

    Article  ADS  Google Scholar 

  28. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87, 010103(R) (2013)

    Article  ADS  Google Scholar 

  29. Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A: Math. Theor. 47, 405302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chiuri, A., Greganti, C., Mazzola, L., Paternostro, M., Mataloni, P.: Linear optics simulation of quantum non-Markovian dynamics. Sci. Rep. 2, 968 (2012)

    Article  ADS  Google Scholar 

  31. Pfaff, W., Taminiau, T.H., Robledo, L., Bernien, H., Markham, M., Twitchen, D.J., Hanson, R.: Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29 (2013)

    Article  Google Scholar 

  32. Metwally, N.: New aspects of the purity and information of an entangled qubit pair. Int. J. Quantum Inf. 6, 187 (2008)

    Article  Google Scholar 

  33. Tan, J., Kyaw, T.H., Yeo, Y.: Non-Markovian environments and entanglement preservation. Phys. Rev. A 81, 062119 (2010)

    Article  ADS  Google Scholar 

  34. Man, Z.-X., Xia, Y.-J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep 5, 13843 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

R.L.F. would like to acknowledge Gerardo Adesso and his group at the University of Nottingham for the very kind hospitality during the completion of this work. R.L.F. also thanks Sigur Rós for fruitful meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Lo Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Franco, R. Nonlocality threshold for entanglement under general dephasing evolutions: a case study. Quantum Inf Process 15, 2393–2404 (2016). https://doi.org/10.1007/s11128-016-1290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1290-3

Keywords

Navigation