Skip to main content
Log in

Dynamics of entanglement in a two-qubit system subjected to the joint relaxation and dephasing classical noises

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We address the entanglement dynamics of two initially entangled non-interacting qubits subjected to the independent sources of classical noises. As classical noises, we consider different configurations of two important classical noises, i.e., static noise and random telegraph noise. Previous studies have focused on the local classical noises acting in the same directions and producing the same relaxation or dephasing dynamics on the qubits. Here, however, we focus on the local classical noises acting in perpendicular directions and producing pure relaxation and dephasing dynamics on the first and second qubits, respectively. This leads to considerably different dynamics of entanglement compared to the one of previous studies. When the qubits are both locally coupled to either the random telegraph noises in the weak coupling regimes or the static noises, we find that there occurs only the entanglement sudden-death effect, while for other configurations the entanglement sudden death may be followed by the revival of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. E. Chitambar, G. Gour, Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  Google Scholar 

  3. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  5. M.A.C. Rossi, C. Benedetti, M.G.A. Paris, Int. J. Quantum Inf. 12, 1560003 (2014)

    Article  MathSciNet  Google Scholar 

  6. M.A.C. Rossi, M.G.A. Paris, J. Chem. Phys. 144, 024113 (2016)

    Article  ADS  Google Scholar 

  7. B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  8. B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  9. T. Yu, J.H. Eberly, Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  10. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Lo Franco, B. Bellomo, S. Maniscalco, G. Compagno, Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  ADS  Google Scholar 

  12. M. Javed, S. Khan, S.A. Ullah, J. Russ. Laser Res. 37, 562 (2016)

    Article  Google Scholar 

  13. C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Int. J. Quantum Inf. 10, 1241005 (2012)

    Article  MathSciNet  Google Scholar 

  14. T. Duty, D. Gunnarsson, K. Bladh, P. Delsing, Phys. Rev. B 69, 140503(R) (2004)

    Article  ADS  Google Scholar 

  15. C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  16. Y. Lahini, Y. Bromberg, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 105, 163905 (2010)

    Article  ADS  Google Scholar 

  17. C. Thompson, G. Vemuri, G.S. Agarwal, Phys. Rev. A 82, 053805 (2010)

    Article  ADS  Google Scholar 

  18. F.F. Olsen, A. Olaya-Castro, N.F. Johnson, J. Phys. Conf. Ser. 84, 012006 (2007)

    Article  Google Scholar 

  19. J. Dajka, M. Mierzejewski, J. Luczka, Phys. Rev. A 77, 042316 (2008)

    Article  ADS  Google Scholar 

  20. A. Nourmandipour, M.K. Tavassoly, M. Rafiee, Phys. Rev. A 93, 022327 (2016)

    Article  ADS  Google Scholar 

  21. F. Nosrati, A. Mortezapour, R. Lo Franco, Phys. Rev. A 101, 012331 (2020)

    Article  ADS  Google Scholar 

  22. P. Bordone, F. Buscemi, C. Benedetti, Fluct. Noise Lett. 11, 1242003 (2012)

    Article  Google Scholar 

  23. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 2007)

    MATH  Google Scholar 

  24. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  25. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 232, 1 (1996)

    Article  ADS  Google Scholar 

  26. J. Bergli, Y.M. Galperin, B.L. Altshuler, New J. Phys. 11, 025002 (2009)

    Article  ADS  Google Scholar 

  27. D. Zhou, A. Lang, R. Joynt, Quantum Inf. Proc. 9, 727 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Mojaveri for useful discussions. This research has been supported by a research fund from Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Akbari-Kourbolagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari-Kourbolagh, Y., Razavian, S. Dynamics of entanglement in a two-qubit system subjected to the joint relaxation and dephasing classical noises. Eur. Phys. J. Plus 135, 284 (2020). https://doi.org/10.1140/epjp/s13360-020-00298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00298-8

Navigation