Skip to main content
Log in

Entanglement dynamics of two interacting qubits under the influence of local dissipation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the dynamics of entanglement given by the concurrence of a two-qubit system in the non-Markovian setting. A quantum master equation is derived, which is solved in the eigenbasis of the system Hamiltonian for X-type initial states. A closed formula for time evolution of concurrence is presented for a pure state. It is shown that under the influence of dissipation non-zero entanglement is created in unentangled two-qubit states which decay in the same way as pure entangled states. We also show that under real circumstances, the decay rate of concurrence is strongly modified by the non-Markovianity of the evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. M A Nielsen and I Chuang, Quantum computation and quantum communication (Cambridge University Press, 2000)

  2. M Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  3. W H Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. J T Barreiro, P Schindler, O Gühne, T Monz, M Chwalla, C F Roos, M Hennrich and R Blatt, Nat. Phys. 6, 943 (2010)

    Article  Google Scholar 

  5. S Schneider and G J Milburn, Phys. Rev. A 57, 3748 (1998)

    Article  ADS  Google Scholar 

  6. Q A Turchette, C J Myatt, B E King, C A Sackett, D Kielpinski, W M Itano, C Monroe and D J Wineland, Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  7. C J Myatt, B E King, Q A Turchette, C A Sackett, D Kielpinski, W M Itano, C Monroe and D J Wineland, Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  8. E Knill, R Laflamme and W H Zurek, Science 279, 342 (1998)

    Article  ADS  Google Scholar 

  9. S Diehl, A Micheli, A Kantian, B Kraus, H Buechler and P Zoller, Nat. Phys. 4, 878 (2008)

    Article  Google Scholar 

  10. F Verstraete, M M Wolf and J I Cirac, Nat. Phys 5, 633 (2009)

    Article  Google Scholar 

  11. H Weimer, M Müller, I Lesanovsky, P Zoller and H P Büchler, Nat. Phys. 6, 382 (2010)

    Article  Google Scholar 

  12. M B Plenio et al, Phys. Rev. A 59, 2468 (1999)

    Article  ADS  Google Scholar 

  13. Beige et al, J. Mod. Opt. 47, 2583 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. P Horodecki, Phys. Rev. A 63, 022108 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. H P Beuer and F Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, New York, 2005)

    Google Scholar 

  16. R Lo Franco, B Bellomo, S Maniscalco and G Compagno, Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. B Bellomo, R Lo Franco and G Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  18. B Bellomo, R Lo Franco and G Compagno, Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  19. K M Fonseca Romero and R Lo Franco, Phys. Scr. 86, 065004 (2012)

    Article  ADS  Google Scholar 

  20. M Q Lone and T Byrnes, Phys. Rev. A 92, 011401(R) (2015)

    Article  ADS  Google Scholar 

  21. B M Terhal and G Burkard, Phys. Rev. A 71, 012336 (2005)

    Article  ADS  Google Scholar 

  22. M Ban, J. Phys. A: Math. Gen. 39, 1927 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. M M Wolf, J Eisert, T S Cubitt and J I Cirac, Phys. Rev. Lett 101, 150402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. F Pastawski, L Clemente and J I Cirac, Phys. Rev. A 83, 012304 (2011)

    Article  ADS  Google Scholar 

  25. P Haikka and S Maniscalco, Phys. Rev. A 81, 052103 (2010)

    Article  ADS  Google Scholar 

  26. W M Zhang, P Y Lo, H N Xiong, M W Y Tu and F Nori, Phys. Rev. Lett. 109, 170402 (2012)

    Article  ADS  Google Scholar 

  27. M A Cirone, G De Chiara, G M Palma and A Recati, New J. Phys. 11, 103055 (2009)

    Article  ADS  Google Scholar 

  28. H J Carmichael, Statistical methods in quantum optics I (Springer-Verlag, Berlin, 2008)

    Book  MATH  Google Scholar 

  29. H P Breuer, B Kappler and F Petruccione, Phys. Rev. A 59, 1633 (1999)

    Article  ADS  Google Scholar 

  30. H P Breuer, B Kappler and F Petruccione, Ann. Phys. (NY) 291, 36 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. M Schröder, U Kleinekathöfer and M Schreiber, J. Chem. Phys. 124, 084903 (2006)

    Article  ADS  Google Scholar 

  32. E Ferraro, M Scala, R Migliore and A Napoli, Phys. Rev. A 80, 042112 (2009)

    Article  ADS  Google Scholar 

  33. T Yu and J H Eberly, Quantum Inf. Comput 7, 459 (2007)

    MathSciNet  Google Scholar 

  34. W K Wooters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MUZAFFAR QADIR LONE.

Appendix A

Appendix A

In this appendix we write the explicit forms of the various functions used in the main text.

$$\begin{array}{@{}rcl@{}} &&{\kern-.7pc}\eta(t) = \frac{{\Gamma}_{\mathrm{M}} \lambda}{\lambda^{2}\! +\! J^{2}}\! \left[ \lambda({\kern-.7pt}1\! -\! {\mathrm{e}}^{\lambda t}\! \cos{\kern-.7pt} Jt{\kern-.7pt})\! +\! J{\mathrm{e}}^{-\lambda t}\sin{\kern-.7pt}J{\kern-.7pt}t\! \right]. \end{array} $$
(A1)
$$\begin{array}{@{}rcl@{}} &&{\kern-.8pc}{\Sigma}(t)\! =\! \frac{\gamma_{0} \lambda}{\lambda^{2}\! +\! 9 J^{2}}\! \left[ \lambda{\kern-.7pt}({\kern-.5pt}1\! -\! {\mathrm{e}}^{\lambda t}\! \cos 3Jt{\kern-.5pt})\! +\! 3J{\mathrm{e}}^{-\lambda t}\sin 3Jt \right].\\ \end{array} $$
(A2)
$$\begin{array}{@{}rcl@{}} {\Gamma}_{-}(t)\! &=&\! \frac{1}{2} {{\int}_{0}^{t}} \!\!{\mathrm{d}}z~\eta(z) \end{array} $$
(A3)
$$\begin{array}{@{}rcl@{}} &=&\! \frac{{\Gamma}_{\mathrm{M}} \lambda}{2[\lambda^{2} + J^{2}]}\left[ \lambda t\! -\! \frac{\lambda^{2}-J^{2}}{\lambda^{2}+J^{2}}(1-{\mathrm{e}}^{-\lambda t}\cos Jt) \right.\\ && ~~~~~~~~~~~~~~~~~~~~\left. - \frac{2\lambda J}{\lambda^{2}+J^{2}}{\mathrm{e}}^{-\lambda t} \sin Jt \right]. \end{array} $$
(A4)
$$\begin{array}{@{}rcl@{}} {\Gamma}_{+}(t)\! &=&\! \frac{1}{2} {{\int}_{0}^{t}} \!\!{\mathrm{d}}z~{\Sigma}(z) \end{array} $$
(A5)
$$\begin{array}{@{}rcl@{}} &=&\!\frac{{\Gamma}_{\mathrm{M}} \lambda}{2[\lambda^{2}\! +\! 9J^{2}]}\! \left[\! \lambda t\! -\! \frac{\lambda^{2}\! -\! 9J^{2}}{\lambda^{2}\! +\!9J^{2}}({\kern-.5pt}1\! -\! {\mathrm{e}}^{-\lambda t}\cos 3Jt)\right.\\ && ~~~~~~~~~~~~~~~~~~~~\left. - \frac{6\lambda J}{\lambda^{2}\! +\! 9J^{2}}{\mathrm{e}}^{-\lambda t} \sin 3Jt\! \right]{\kern-.7pt}. \end{array} $$
(A6)
$$\begin{array}{@{}rcl@{}} S_{-}(t)\! &=&\!\frac{{\Gamma}_{\mathrm{M}} \lambda}{2[\lambda^{2} + J^{2}]}\!\left[ J t\! +\! \frac{2J}{\lambda^{2}+J^{2}}(1\! -\! {\mathrm{e}}^{-\lambda t}\cos Jt) \right.\\ && ~~~~~~~~~~~~~~~~~~\left. + \frac{\lambda^{2}-J^{2}}{\lambda^{2}+J^{2}}{\mathrm{e}}^{-\lambda t} \sin Jt \right]. \end{array} $$
(A7)
$$\begin{array}{@{}rcl@{}} S_{+}(t)\! &=&\! \frac{{\Gamma}_{\mathrm{M}} \lambda}{2{\kern-.5pt}[{\kern-.5pt}\lambda^{2}\! +\! 9{\kern-.5pt}J^{2}{\kern-.5pt}]}\! \left[\! 3{\kern-.5pt}J{\kern-.5pt} t\! +\!\frac{6J}{\lambda^{2}\! +\! 9J^{2}}{\kern-.5pt}({\kern-.5pt}1\! -\!{\mathrm{e}}^{-\lambda t}{\kern-.5pt}\cos{\kern-.5pt}3{\kern-.5pt}J{\kern-.5pt}t{\kern-.5pt}) \right.\\ && ~~~~~~~~~~~~~~~~~~~~\left. + \frac{\lambda^{2}-9J^{2}}{\lambda^{2}+9J^{2}}{\mathrm{e}}^{-\lambda t} \sin3 Jt \right] .\end{array} $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LONE, M.Q. Entanglement dynamics of two interacting qubits under the influence of local dissipation. Pramana - J Phys 87, 16 (2016). https://doi.org/10.1007/s12043-016-1228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1228-4

Keywords

PACS Nos

Navigation