Skip to main content
Log in

Nonclassical dynamics with time- and intensity-dependent coupling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonclassical light and collapse-revival dynamics are consequences of dynamical quantum interference in transient photon-atom interaction. We study the time evolution of atom and photons in a high quality cavity for time-dependent atom-field coupling, with different initial field states and initial atomic states. The inversion for initial superposed atomic state seems to be independent of initial classical fields but can be stimulated by the Schrodinger cat field. Interesting effects of the transient coupling are found through analysis of the collapse-revival in population inversion and the features in the Wigner function. Oscillatory coupling coefficient can prolong the occurrence of collapse, in analogy to the Zeno effect. The intensity atom-field coupling duration is an important parameter for controlling atomic inversion and producing frozen nonclassical light in the cavity after the atom-field coupling ceases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leibfried, D., et al.: Creation of a six-atom ’Schrödinger’ cat state. Nature 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  2. Ralph, T.C., et al.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  3. Dakna, M., et al.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)

    Article  ADS  Google Scholar 

  4. Jones, G.N., Haight, J., Lee, C.T.: Nonclassical effects in photon-added thermal state. Quant. Semiclass. Opt. 9, 411–418 (1997)

    Article  ADS  Google Scholar 

  5. Sherman, B., Kurizki, G., Kadyshevitch, A.: Nonclassical field dynamics in photonic band structures: Atomic-beam resonant interaction with a spatially periodic field mode. Phys. Rev. Lett. 69, 1927–1930 (1992)

    Article  ADS  Google Scholar 

  6. Glauber, R.J., Lewenstein, M.: Quantum optics of dielectric media. Phys. Rev. A 43, 467–491 (1991)

    Google Scholar 

  7. Harel, G., et al.: Optimized preparation of quantum states by conditional measurements. Phys. Rev. A 53, 4534–4538 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Kozhekin, A., Kurizki, G., Sherman, B.: Quantum-state control by a single conditional measurement: The periodically switched Jaynes-Cummings model. Phys. Rev. A 54, 3535–3538 (1996)

    Google Scholar 

  9. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  10. Friedrich, B., Herschbach, D.: Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 74, 4623–4626 (1995)

    Article  ADS  Google Scholar 

  11. Dung, H.T., Tana’s, R., Shumovsky, A.S.: Collapses, revivals, and phase properties of the field in Jaynes-Cummings type models. Opt. Commun. 79, 462–468 (1990)

    Article  ADS  Google Scholar 

  12. Banaszek, K., W’odkiewicz, K.: Direct probing of quantum phase space by photon counting. Phys. Rev. Lett. 76, 4344–4347 (1996)

    Article  ADS  Google Scholar 

  13. Wallentowitz, S., Vogel, W.: Unbalanced homodyning for quantum state measurements. Phys. Rev. A 53, 4528–4533 (1996)

    Article  ADS  Google Scholar 

  14. Lutterbach, L.G., Davidovich, L.: Method for direct measurement of the Wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78, 2547–2550 (1997)

    Article  ADS  Google Scholar 

  15. Nogues, G.G., Rauschenbeutel, A., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S., Lutterbach, L.G., Davidovich, L.: Measurement of a negative value for the Wigner function of radiation. Phys. Rev. A 62, 054101–054104 (2000)

    Google Scholar 

  16. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A ‘Schroedinger cat’ superposition of an atom. Science 272, 1131–1136 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007)

    Article  ADS  Google Scholar 

  18. Raimond, J.M., Sayrin, C., Gleyzes, S., Dotsenko, I., Brune, M., Haroche, S., Facchi, P., Pascazio, S.: Phase space tweezers for tailoring cavity fields by quantum zeno dynamics. Phys. Rev. Lett. 105, 213601 (2010)

    Article  ADS  Google Scholar 

  19. lvarez, G.A., Bhaktavatsala Rao, D.D., Frydman, L., Kurizki, G.: Zeno and anti-zeno polarization control of spin ensembles by induced dephasing. Phys. Rev. Lett. 105, 160401 (2010)

    Article  Google Scholar 

  20. Kofman, A.G., Kurizki, G., Opatrný, T.: Zeno and anti-Zeno effects for photon polarization dephasing. Phys. Rev. A 63, 042108 (2001)

    Article  ADS  Google Scholar 

  21. Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observation. Nature 405, 546–550 (2000)

    Google Scholar 

  22. Kofman, A.G., Kurizki, G.: Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. Phys. Rev. Lett. 87, 270405 (2001)

    Article  Google Scholar 

  23. Kofman, A.G., Kurizki, G.: Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93, 130406 (2004)

    Article  ADS  Google Scholar 

  24. Kofman, A.G., Kurizki, G.: Quantum Zeno effect on atomic excitation decay in resonators. Phys. Rev. A 54, R3750–R3753 (1996)

    Article  ADS  Google Scholar 

  25. Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  26. Vernooy, D.W., Kimble, H.J.: Well-dressed states for wave-packet dynamics in cavity QED. Phys. Rev. A 56, 4287–4295 (1997)

    Article  ADS  Google Scholar 

  27. Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775–R2778 (1991)

    Article  ADS  Google Scholar 

  28. Agarwal, G.S., Tara, K.: Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A 46, 485–488 (1992)

    Article  ADS  Google Scholar 

  29. Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882–1902 (1969)

    Article  ADS  Google Scholar 

  30. Glauber, R.J.: Quantum Theory of Optical Coherence: Selected Papers and Lectures. Wiley-VCH, Weinheim (2007)

    Google Scholar 

Download references

Acknowledgments

R.O. thanks support by the Ministry of Higher Education (MOHE)/University of Malaya HIR Grant No. A-000004-50001 and the MOHE ERGS Grant No. ER014-2011A. Sudha Singh acknowledges the support from the University Grants Commission (UGC, New Delhi, India) in the form of a Major Research Project (F.No.37-327/2009 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Raymond Ooi.

Appendices

Appendix A: density matrix elements

In general, the density matrix elements of the field \(\rho _{nm}\) are obtained by tracing out the atomic system (subscript ”s”), \(\rho _{nm}=\langle n|\hat{\rho }_{f}|m\rangle =\sum \nolimits _{x}\langle n|\hat{\rho }_{xx}|m\rangle \) where \(\hat{\rho }_{f}=Tr_{s}\{\hat{\rho } (t)\}=\sum \nolimits _{x=a,b}\hat{\rho }_{xx}\) is the reduced density matrix of the field (subscript ”f”), \(\hat{\rho }_{xx}=\langle x|\hat{\rho }|x\rangle \,(x=a,b)\) and \(\langle n|\hat{\rho }_{xx}|m\rangle =C_{x,n}(t)C_{x,m}^{*}(t)\,(x=a,b)\). The transient state of the field is governed by the matrix element of the field \(\rho _{nm}(t)\). For the two-level atom,

$$\begin{aligned} \rho _{nm}(t) =\langle n|\{\hat{\rho }_{aa}(t)+\hat{\rho }_{bb} (t)\}|m\rangle =C_{a,n}(t)C_{a,m}^{*}(t)+C_{b,n}(t)C_{b,m}^{*}(t)\quad \end{aligned}$$
(26)

where \(C_{x,n}(t)\) is obtained from the solutions of the standard coupled Eqs. (3) and (4) for a two-level atom.

Initially, the atomic system \(\hat{\rho }_{s}(0)\) is uncorrelated to the field state \(\hat{\rho }_{f}(0)\), i.e. \(\hat{\rho }(0)=\, \hat{\rho }_{f}(0)\otimes \hat{\rho }_{s}(0)\) since both are not coupled. Thus, the initial coefficients can be decomposed into products of the atomic (subscript ’\(x=a,b\)’) and photonic coefficients (subscript ’\(n\)’),

$$\begin{aligned} C_{x,n}(0)=C_{x}(0)C_{n}(0) \end{aligned}$$
(27)

satisfying \(|C_{a}(0)|^{2}+|C_{b}(0)|^{2}= \rho _{aa}(0)+\rho _{bb}(0)=1\) with \(\rho _{xx}(0)=\langle x|\hat{\rho }_{s}(0)|x\rangle =C_{x}(0)C_{x}^{*}(0)\). Thus \(C_{x,n}(0)C_{y,m}^{*}(0)=C_{x}(0)C_{y}^{*}(0)\rho _{nm}(0)\). The initial coherence between photon numbers is

$$\begin{aligned} {\rho _{nm}}(0)=\langle n|{\hat{\rho }}_{f}(0)|m\rangle =C_{n}(0)C_{m}^{*}(0) \end{aligned}$$
(28)

where we use Eqs. (26) and (27). As expected, the initial matrix element of the field \(\rho _{nm}(0)\) does not depend on the atomic initial conditions.

Appendix B: Wigner function versus density matrix elements

Various physical parameters have been defined to determine the nonclassical states of light as well as the degree of nonclassicality [27]. The typical ones are the squeezing parameter \(S=\langle \hat{p}^{2}\rangle -\langle \hat{p}\rangle ^{2}\) with \(\hat{p}=\hat{a}e^{i\theta }+\hat{a} ^{\dagger }e^{-i\theta }\), antibunching in \(G^{(2)}\), entanglement criteria, Mandel’s \(Q=(\langle \hat{n}^{2}\rangle -\langle \hat{n}\rangle ^{2})/\langle \hat{n}\rangle ,\hat{n}=\hat{a}^{\dagger }\hat{a}\) and the Wigner function W. Each quantity displays nonclassicality from certain aspects. There are states which do not meet all the nonclassical criteria. For example, Schrödinger cat is not squeezed and has \(Q>0\) (super-Poissonian statistics) for certain values of phase \(\theta \), but it shows nonclassicality through negativity in W and Agarwal’s parameter [28]. The W is a reliable quantity for studying PhA and PhS processes for producing nonclassical states. The relationship between W and the matrix elements for the field \(\rho _{nm}\) can be obtained using [9, 29],

$$\begin{aligned} \frac{W(\alpha ,t)}{K(\alpha )}=\sum _{m,n=0}^{\infty }\rho _{nm}(t) \int \langle -\beta |n\rangle \langle m|\beta \rangle e^{2(\beta ^{*}\alpha -\beta \alpha ^{*})}d^{2}\beta \end{aligned}$$
(29)

where \(K(\alpha )=\frac{2e^{-2\left| \alpha \right|^{2}}}{\pi }\). We use \(\hat{\rho }_{f}(t)=\sum _{m,n}^{\infty }|n\rangle \rho _{nm}(t)\langle m|\) the field state in photon number basis \(\{|n\rangle \}\) with the field matrix element \(\rho _{nm}(t)\) given by Eq. (26). The complex coherent state variable \(\alpha =re^{i\theta }\) can be mapped into polar coordinates, r and \(\theta \). The \(|r|^{2}\) corresponds to the number of photons while \(\theta \) is the coherent state phase. Similarly for \(\beta \). Inserting \(\langle n|\alpha \rangle =e^{-|\alpha |^{2}/2}\frac{\alpha ^{n}}{\sqrt{n!}}\) and \(\int \int \beta ^{m}\beta ^{*n}e^{-|\beta |^{2}}e^{(\beta ^{*}2\alpha -\beta 2\alpha ^{*})}d^{2}\beta =\pi L_{n}^{m-n}(|2\alpha |^{2})n!e^{-|2\alpha |^{2}}(2\alpha )^{m-n}\) we obtain the required Eq. (14)

In view of \(C_{b,0}(t)=0\), straightforward calculation from Eq. (14) gives

$$\begin{aligned} \frac{W(\alpha , t)}{K(\alpha )}=\sum _{m=0}^{\infty }(-1)^{m} \{L_{m}^{0}(x)|C_{a,m}(t)|^{2}-L_{m+1}^{0}(x)|C_{b,m+1}(t)|^{2}\}+ \end{aligned}$$
(30)
$$\begin{aligned}&\sum _{m=1}^{\infty }\sum _{n=0}^{m-1}(-1)^{n}\left[ \sqrt{\frac{n!}{m!}} L_{n}^{k}(x)2Re\{z^{k}C_{a,n}(t) C_{a,m}^{*}(t)\}\right.\nonumber \\&\quad \quad \left.-\sqrt{\frac{n+1!}{m+1!}} L_{n+1}^{k}(x)2Re\{z^{k}C_{b,n+1}(t)C_{b,m+1}^{*}(t)\}\right].\nonumber \end{aligned}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, C.H.R., Hazmin, S.N. & Singh, S. Nonclassical dynamics with time- and intensity-dependent coupling. Quantum Inf Process 12, 2103–2120 (2013). https://doi.org/10.1007/s11128-012-0512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0512-6

Keywords

Navigation