Skip to main content
Log in

Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Walls, D.F., Milburn, G.J.: Quantum optics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Orszag, M.: Quantum optics. Springer, Berlin (2008)

    Google Scholar 

  4. Gerry, C.C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  5. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Claredon Press, Oxford (1997)

    MATH  Google Scholar 

  6. Haroche, S., Raimond, J.M.: Exploring the quantum: Atoms, Cavities and Photons. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  7. Meystre, P., Sargent, M. III: Element of quantum optics. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  9. Weissbluth, M.: Photon-Atom Interactions. Academic Press, New York (1989)

    Google Scholar 

  10. Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)

    Google Scholar 

  11. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Phys. Rev. Lett. 44, 1323–1326 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Phys. Rev. A 23, 236–247 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jaynes, E.T., Cummings, F.W.: Proc. Inst. Elect. Eng. 51, 89–109 (1963)

    Article  Google Scholar 

  14. Cummings, F.W.: Phys. Rev. 149, A1051–A1056 (1965)

    Article  Google Scholar 

  15. Knight, P.L., Radmore, P.M.: Phys. Rev. A 26, 676–679 (1982)

    Article  ADS  Google Scholar 

  16. Rabi, I.I.: Phys. Rev. 51, 652–654 (1937)

    Article  ADS  Google Scholar 

  17. Dell’Anno, F., De Siena, S., Illuminati, F.: Phys. Rep. 428, 53–168 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yoo, H.J., Eberly, J.H.: Phys. Rep. 118, 239–337 (1985)

    Article  ADS  Google Scholar 

  19. Shore, B.W., Knight, P.L.: J. Mod. Opt. 40, 1195–1238 (1993)

    Article  ADS  Google Scholar 

  20. Messina, A., Maniscalco, S., Napoli, A.: J. Mod. Opt. 50, 1–49 (2003)

    ADS  Google Scholar 

  21. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-Vch Verlag, Berlin (2001)

    Book  MATH  Google Scholar 

  22. Knight, P.L., Milonni, P.W.: Phys. Rep. 66, 21–107 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. Allen, L., Knight, P.L.: Concepts of Quantum Optics. Pergamon, Oxford (1983)

    Google Scholar 

  24. Wigner, E.P.: Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-xiang Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11665013).

Appendix: Wigner function for the operator |n〉〈m|

Appendix: Wigner function for the operator |n〉〈m|

Substituting

$$\begin{array}{@{}rcl@{}} \left\langle m\right\vert & =&\frac{1}{\sqrt{m!}}\frac{d^{m}}{d\mu^{m} }\left\langle 0\right\vert \exp \left( \mu a\right) |_{\mu= 0}, \\ \left\vert n\right\rangle & =&\frac{1}{\sqrt{n!}}\frac{d^{n}}{d\nu^{n}} \exp \left( \nu a^{\dag}\right) \left\vert 0\right\rangle |_{\nu= 0}, \end{array} $$
(A1)

into (17), we have

$$ WF_{\left\vert n\right\rangle \left\langle m\right\vert }\left( \xi \right) \!=\!\frac{2}{\pi \sqrt{m!n!}}\frac{d^{m+n}}{d\mu^{m}d\nu^{n}}\left\langle 0\right\vert \exp \left( \mu a\right) \!\colon\! \exp \left( \!-2\left( a^{\dag }\!-\!\xi^{\ast}\right) \left( a\!-\!\xi \right) \right) \!\colon\! \exp \left( \nu a^{\dag}\right) \left\vert 0\right\rangle |_{\mu=\nu= 0}. $$
(A2)

Inserting the completeness of the coherent states, i.e. \(\int \frac {d^{2}z_{1} }{\pi }\left \vert z_{1}\right \rangle \left \langle z_{1}\right \vert = 1\) and \(\int \frac {d^{2}z_{2}}{\pi }\left \vert z_{2}\right \rangle \left \langle z_{2}\right \vert = 1\), we have

$$\begin{array}{@{}rcl@{}} WF_{\left\vert n\right\rangle \left\langle m\right\vert }\left( \xi \right) & =&\frac{2}{\pi \sqrt{m!n!}}e^{-2\left\vert \xi \right\vert^{2}}\frac{d^{m+n} }{d\mu^{m}d\nu^{n}} \\ && \times \int \frac{d^{2}z_{1}}{\pi}\exp \left( -\left\vert z_{1}\right\vert ^{2}+\mu z_{1}+ 2\xi z_{1}^{\ast}\right) \\ && \times \int \frac{d^{2}z_{2}}{\pi}\exp \left( -\left\vert z_{2}\right\vert ^{2}+\left( 2\allowbreak \xi^{\ast}-z_{1}^{\ast}\right) z_{2}+\nu z_{2} ^{\ast}\right) |_{\mu=\nu= 0}. \end{array} $$
(A3)

After employing the integration, we obtain the Wigner function for the operator |n〉〈m|,

$$ WF_{\left\vert n\right\rangle \left\langle m\right\vert }\left( \xi \right) =\frac{2\exp \left( -2\left\vert \xi \right\vert^{2}\right) }{\pi \sqrt{m!n!} }\frac{d^{m+n}}{d\mu^{m}d\nu^{n}}\exp \left( + 2\mu \xi+ 2\nu \allowbreak \xi ^{\ast}-\mu \nu \right) |_{\mu=\nu= 0}. $$
(A4)

Using this expression, the Wigner function for any quantum state can be expressed based on its expansion in Fock state space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jm., Xu, Xx. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels. Int J Theor Phys 57, 2167–2191 (2018). https://doi.org/10.1007/s10773-018-3741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3741-3

Keywords

Navigation