Skip to main content
Log in

Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Temperature response of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalytic properties directly determines the CO2 assimilation capacity of photosynthetic organisms as well as their survival in environments with different thermal conditions. Despite unquestionable importance of Rubisco, the comprehensive analysis summarizing temperature responses of Rubisco traits across lineages of carbon-fixing organisms is lacking. Here, we present a review of the temperature responses of Rubisco carboxylase specific activity (\(k_{\text{cat}}^{\text{c}}\)) within and across domains of life. In particular, we consider the variability of temperature responses, and their ecological, physiological, and evolutionary controls. We observed over two-fold differences in the energy of activation (ΔH a) among different groups of photosynthetic organisms, and found significant differences between C3 plants from cool habitats, C3 plants from warm habitats and C4 plants. According to phylogenetically independent contrast analysis, ΔH a was not related to the species optimum growth temperature (T growth), but was positively correlated with Rubisco specificity factor (S c/o) across all organisms. However, when only land plants were analyzed, ΔH a was positively correlated with both T growth and S c/o, indicating different trends for these traits in plants versus unicellular aquatic organisms, such as algae and bacteria. The optimum temperature (T opt) for \(k_{\text{cat}}^{\text{c}}\) correlated with S c/o for land plants and for all organisms pooled, but the effect of T growth on T opt was driven by species phylogeny. The overall phylogenetic signal was significant for all analyzed parameters, stressing the importance of considering the evolutionary framework and accounting for shared ancestry when deciphering relationships between Rubisco kinetic parameters. We argue that these findings have important implications for improving global photosynthesis models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86:1272–1281

    CAS  PubMed  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • An SJ, Pandeya D, Park SW, Li J, Kwon JK, Koeda S, Hosokawa M, Paek NC, Choi D, Kang BC (2011) Characterization and genetic analysis of a low-temperature-sensitive mutant, sy-2, in Capsicum chinense. Theor Appl Genet 122:459–470

    CAS  PubMed  Google Scholar 

  • Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC (2012) Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? J Exp Bot 63:895–911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys 201:247–254

    CAS  PubMed  Google Scholar 

  • Badger MR, Andrews TJ (1974) Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase/oxygenase from spinach. Biochem Biophys Res Commun 60:204–210

    CAS  PubMed  Google Scholar 

  • Badger MR, Andrews TJ (1987) Co-evolution of Rubisco and CO2 concentrating mechanisms. In: Biggens J (ed) Progress in photosynthesis research. Martinus Nijhoff Publishers, Dordrecht, pp 601–609

    Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Wash Year b 76:355–361

    Google Scholar 

  • Bermúdez MA, Galmés J, Moreno I, Mullineaux PM, Gotor C, Romero LC (2012) Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol 160:274–288

    PubMed Central  PubMed  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    CAS  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Google Scholar 

  • Bilger W, Schreiber U U, Lange OL (1987) Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress. Functional analysis in Mediterranean ecosystems, NATO ASI series, series G: ecological sciences, vol 15. Springer, Berlin, pp 391–399

    Google Scholar 

  • Björkman O, Badger MR, Armond PA (1980) Response and adaptation of photosynthesis to high temperatures. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 233–249

    Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1972) Light saturation, photosynthesis rate, RuDP carboxylase activity, and specific leaf weight in soybeans grown under different light intensities. Crop Sci 12:77–79

    CAS  Google Scholar 

  • Bracher A, Starling-Windhof A, Hartl FU, Hayer-Hartl M (2011) Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nat Struct Mol Biol 18:875–880

    CAS  PubMed  Google Scholar 

  • Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA (2012) Epistasis as the primary factor in molecular evolution. Nature 490:535–538

    CAS  PubMed  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165:397–406

    CAS  PubMed  Google Scholar 

  • Bunce JA (2000) Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. Photosynth Res 63:59–67

    CAS  PubMed  Google Scholar 

  • Castrillo M (1995) Ribulose-1,5-bis-phosphate carboxylase activity in altitudinal populations of Espeletia schultzii Wedd. Oecologia 101:193–196

    Google Scholar 

  • Cavanagh AP, Kubien DS (2013) Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation? Photosynth Res 119:203–214

    PubMed  Google Scholar 

  • Cen YP, Sage RF (2005) The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chabot BF, Chabot JF, Billings WD (1972) Ribulose-1,5-diphosphate carboxylase activity in arctic and alpine populations of Oxyria digyna. Photosynthetica 6:364–369

    CAS  Google Scholar 

  • Christin PA, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G (2008) Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol 25:2361–2368

    CAS  PubMed  Google Scholar 

  • Cook CM, Lanaras T, Wood AP, Codd GA, Kelly DP (1991) Kinetic properties of ribulose bisphosphate carboxylase/oxygenase from Thiobacillus thyasiris, the putative symbiont of Thyasira flexuosa (Montagu), a bivalve mussel. J Gen Microbiol 137:1491–1496

    CAS  Google Scholar 

  • Cowling SA, Sage RF (1998) Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ 21:427–435

    CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Google Scholar 

  • De Beer JF (1963) Influences of temperature on Arachis hypogaea L.: with special reference to its pollen viability. Dissertation, The State Agricultural University, Wageningen

  • De Pereira-Netto AB, De Magalhaes ACN, Pinto HS (1998) Nitrate reductase activity in field-grown Pueraria lobata (kudzu) in southeastern Brazil. Pesqui Agropecu Bras 33:1971–1976

    Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne RF (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660

    CAS  Google Scholar 

  • Díaz-Espejo A (2013) New challenges in modelling photosynthesis: temperature dependencies of Rubisco kinetics. Plant Cell Environ 36:2104–2107

    PubMed  Google Scholar 

  • Draisma SGA, Prud’Homme van Reine WF, Stam WT, Olsen JL (2001) A reassessment of phylogenetic relationships within the Phaeophyceae based on Rubisco large subunit and ribosomal DNA sequences. J Phycol 37:586–603

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2 and O2 concentration. Plant Physiol 59:86–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T (1999) Presence of a structurally novel type Ribulose-bisphosphate Carboxylase/Oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274:5078–5082

    CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Google Scholar 

  • Ford TW (1979) Ribulose-1,5-bisphosphate carboxylase from the thermophilic, acidophilic alga, Cyanidium caldarium (Geitler). Purification, characterisation and thermostability of the enzyme. Biochim Biophys Acta 569:239–248

    CAS  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    CAS  PubMed  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Google Scholar 

  • Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre H (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ 34:245–260

    PubMed  Google Scholar 

  • Galmés J, Aranjuelo I, Medrano H, Flexas J (2013) Variation in Rubisco content and activity under variable climatic factor. Photosynth Res 117(73):90

    Google Scholar 

  • Galmés J, Andralojc PJ, Kapralov MV, Flexas J, Keys AJ, Molins A, Parry MAJ, Conesa MÀ (2014a) Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). N Phytol 203:989–999

    Google Scholar 

  • Galmés J, Conesa MÀ, Díaz-Espejo A, Mir A, Perdomo JA, Niinemets Ü, Flexas J (2014b) Rubisco catalytic properties optimized for present and future climatic conditions. Plant Sci 226:61–70

    PubMed  Google Scholar 

  • Galmés J, Kapralov MV, Andralojc PJ, Conesa MÀ, Keys AJ, Parry MAJ, Flexas J (2014c) Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ 37:1989–2001

    PubMed  Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am Zool 39:374–388

    Google Scholar 

  • Geigenberger P, Geiger M, Stitt M (1998) High-temperature perturbation of starch synthesis is attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers. Plant Physiol 117:1307–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gezelius K (1975) Extraction and some characteristics of ribulose-1,5-diphosphate carboxylase from Pinus sylvestris. Photosynthetica 9:192–200

    CAS  Google Scholar 

  • Gummadi SN (2003) What is the role of thermodynamics on protein stability? Biotechnol Bioprocess Eng 8:9–18

    CAS  Google Scholar 

  • Hall NP, Keys AJ (1983) Temperature dependence of the enzymic carboxylation and oxygenation of ribulose 1,5-bisphosphate in relation to effects of temperature on photosynthesis. Plant Physiol 72:945–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamerlynck EP, Knapp AK (1994) Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: implications for tree distribution patterns. For Ecol Manag 68:149–159

    Google Scholar 

  • Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ (ed) Modeling crop photosynthesis—from biochemistry to canopy, CSSA Special Publication, No. 19. Agronomy and Crop Science Society of America, Madison, pp 17–39

    Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    CAS  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 33:147–151

    Google Scholar 

  • Heda GD, Madigan MT (1988) Thermal properties and oxygenase activity of ribulose-l,5-bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium tepidum. FEMS Microbiol Lett 51:45–50

    CAS  Google Scholar 

  • Hikosaka K (1997) Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use. Ann Bot 80:721–730

    CAS  Google Scholar 

  • Hikosaka K, Hirose T (1998) Leaf and canopy photosynthesis of C3 plants at elevated CO2 in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction. Ecol Model 106:247–259

    CAS  Google Scholar 

  • Hikosaka K, Murakami A, Hirose T (1999) Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant Cell Environ 22:841–849

    CAS  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    CAS  PubMed  Google Scholar 

  • Hudson GS, Mahon JD, Anderson PA, Gibbs MJ, Badger MR, Andrews TJ, Whitfeld PR (1990) Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J Biol Chem 265:808–814

    CAS  PubMed  Google Scholar 

  • Hüve K, Bichele I, Tobias M, Niinemets Ü (2006) Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant Cell Environ 29:212–228

    PubMed  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    PubMed  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson FH, Eyring H, Williams RW (1942) The nature of enzyme inhibitions in bacterial luminescence: sulfanilamide, urethane, temperature, and pressure. J Cell Comp Physiol 20:247–268

    CAS  Google Scholar 

  • Jordan DB, Chollet R (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase from Chromatium vinosum. Arch Biochem Biophys 236:487–496

    CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515

    CAS  Google Scholar 

  • Jordan DB, Ogren WL (1983) Species variation in kinetic properties of ribulose 1,5-bisphosphate carboxylase oxygenase. Arch Biochem Biophys 227:425–433

    CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    CAS  PubMed  Google Scholar 

  • Junttila O (1986) Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. Tree Physiol 1:185–192

    PubMed  Google Scholar 

  • Kane HJ, Vill J, Entsch B, Paul K, Morell MK, Andrews TJ (1994) An improved method for measuring the CO2/O2 specificity of ribulose bisphosphate carboxylase–oxygenase. Aust J Plant Physiol 21:449–461

    CAS  Google Scholar 

  • Kapralov MV, Kubien DS, Andersson I, Filatov DA (2011) Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme. Mol Biol Evol 28:1491–1503

    CAS  PubMed  Google Scholar 

  • Kapralov MV, Smith JAC, Filatov DA (2012) Rubisco evolution in C4 eudicots: an analysis of Amaranthaceae sensu lato. PLoS ONE 7:e52974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    CAS  PubMed  Google Scholar 

  • Kempner E (1963) Upper temperature limit for life. Science 142:1318–1319

    CAS  PubMed  Google Scholar 

  • Kent SS, Tomany MJ (1984) Kinetic variance of ribulose-1,5-bisphosphate carboxylase/oxygenase isolated from diverse taxonomic sources. Plant Physiol 75:645–650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K, Portis AR (2006) Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res 87:195–204

    CAS  PubMed  Google Scholar 

  • King CA, Oliver LR (1994) A model for predicting large crabgrass (Digitaria sanguinalis) emergence as influenced by temperature and water potential. Weed Sci 42:561–567

    CAS  Google Scholar 

  • Ku SB, Edwards GE (1977) Oxygen inhibition of photosynthesis I. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol 59:986–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubien DS, Whitney SM, Moore PV, Jesson LK (2008) The biochemistry of Rubisco in Flaveria. J Exp Bot 59:1767–1777

    CAS  PubMed  Google Scholar 

  • Kvist T, Mengewein A, Manzei S, Ahring BK, Westermann P (2005) Diversity of thermophilic and non-thermophilic Crenarchaeota at 80 degrees C. FEMS Microbiol Lett 244:61–68

  • Laisk A, Oja V (1998) Dynamics of leaf photosynthesis: rapid-response measurements and their interpretations. CSIRO Publishing, Canberra

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, New York

    Google Scholar 

  • Lehnherr B, Mächler F, Nösberger J (1985) Influence of temperature on the ratio of ribulose bisphosphate carboxylase to oxygenase activities and on the ratio of photosynthesis to photorespiration of leaves. J Exp Bot 36:1117–1125

    CAS  Google Scholar 

  • Liu CM, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202

    CAS  PubMed  Google Scholar 

  • Madgwick PJ, Parmar S, Parry MAJ (1998) Effect of mutations of residue 340 in the large subunit polypeptide of Rubisco from Anacystis nidulans. Eur J Biochem 253:476–479

    CAS  PubMed  Google Scholar 

  • Makino A (1994) Biochemistry of C3-photosynthesis in high CO2. J Plant Res 107:79–84

    CAS  Google Scholar 

  • Makino A, Mae T, Ohira K (1988) Differences between wheat and rice in the enzymic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174:30–38

    CAS  PubMed  Google Scholar 

  • Makino A, Nakano H, Mae T (1994) Effects of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiol 105:1231–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002a) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    CAS  Google Scholar 

  • Medlyn BE, Loustau D, Delzon S (2002b) Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant Cell Environ 25:1155–1165

    CAS  Google Scholar 

  • Monson RK, Stidham MA, Williams GJ, Edwards GE, Uribe EG (1982) Temperature dependence of photosynthesis in Agropyron smithii Rydb. I. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Google Scholar 

  • Niinemets Ü, Oja V, Kull O (1999) Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant Cell Environ 22:1497–1514

    CAS  Google Scholar 

  • Niinemets Ü, Wright IJ, Evans JR (2009) Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J Exp Bot 60:2433–2449

    CAS  PubMed  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    CAS  PubMed  Google Scholar 

  • Parry MAJ, Keys AJ, Gutteridge S (1989) Variation in the specificity factor of C3 higher plant Rubiscos determined by the total consumption of Ribulose-P2. J Exp Bot 40:317–320

    CAS  Google Scholar 

  • Paul EMM, Hardwick RC, Parker PF (1984) Genotypic variation in the response to sub-optimal temperatures of growth in tomato (Lycopersicon esculentum Mill.). N Phytol 98:221–230

    Google Scholar 

  • Phillips PJ, McWilliam JR (1971) Thermal response of the primary carboxylating enzymes from C3 and C4 plants adapted to contrasting temperature environments. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration. Wiley-Interscience, Wiley, New York, pp 97–104

    Google Scholar 

  • Pittermann J, Sage RF (2000) Photosynthetic performance at low temperature of Bouteloua gracilis Lag., a high-altitude C4 grass from the Rocky Mountains, USA. Plant Cell Environ 23:811–823

    CAS  Google Scholar 

  • Pittermann J, Sage RF (2001) The response of the high altitude C4 grass Muhlenbergia montana (Nutt.) AS Hitchc. to long-and short-term chilling. J Exp Bot 52:829–838

    CAS  PubMed  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Google Scholar 

  • Read JJ, Morgan JA, Chatterton NJ, Harrison PA (1997) Gas exchange and carbohydrate and nitrogen concentrations in leaves of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) at different carbon dioxide concentrations and temperatures. Ann Bot 79:197–206

    CAS  Google Scholar 

  • Rogers A (2014) The use and misuse of Vc,max in Earth System Models. Photosynth Res 119:15–29

    CAS  PubMed  Google Scholar 

  • Sabbagh M, Van Hoewyk D (2012) Malformed selenoproteins are removed by the ubiquitin–proteasome pathway in Stanleya pinnata. Plant Cell Physiol 53:555–564

    CAS  PubMed  Google Scholar 

  • Sage RF (2002) Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    CAS  PubMed  Google Scholar 

  • Sage RF, Coleman JR (2001) Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci 6:18–24

    CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    CAS  PubMed  Google Scholar 

  • Sage RF, Santrucek J, Grise DJ (1995) Temperature effects on the photosynthetic response of the C3 plants to long-term CO2 enrichment. Vegetatio 121:67–77

    Google Scholar 

  • Sage RF, Cen Y, Meirong L (2002) The activation state of Rubisco directly limits photosynthesis at low CO2 and low O2 partial pressures. Photosynth Res 71:241–250

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savir Y, Noorb E, Milob R, Tlustya T (2010) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci USA 107:3475–3480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seemann JR, Berry JA, Downton WJS (1984) Photosynthetic response and adaptation to high temperature in desert plants. A comparison of gas exchange and fluorescence methods for studies of thermal tolerance. Plant Physiol 75:364–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sen L, Fares MA, Liang B, Gao L, Wang B, Wang T, Su YJ (2011) Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns. Biol Direct 6:29

    PubMed Central  PubMed  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    CAS  Google Scholar 

  • Sharkey TD, Badger MR, von Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosynth Res 67:147–156

    CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    CAS  PubMed  Google Scholar 

  • Sharwood RE, von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol 146:83–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheridan RP, Ulik T (1976) Adaptive photosynthesis responses to temperature extremes by the thermophilic cyanophyte Synechococcus lividus. J Phycol 12:255–261

    CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757

    CAS  Google Scholar 

  • Singsaas EL, Laporte MM, Shi J-Z, Monson RK, Bowling DR, Johnson K, Lerdau M, Jasentuliytana A, Sharkey TD (1999) Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol 19:917–924

    CAS  PubMed  Google Scholar 

  • Somero GN (1969) Enzymic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am Nat 103:517–530

    CAS  Google Scholar 

  • Somerville CR (1986) Future prospects for genetic manipulation of Rubisco. Philos Trans R Soc B 313:459–469

    CAS  Google Scholar 

  • Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA 102:17225–17230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stein JL, Felbeck H (1993) Kinetic and physical properties of a recombinant RuBisCO from a chemoautotrophic endosymbiont. Mol Mar Biol Biotechnol 2:280–290

    CAS  PubMed  Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440

    Google Scholar 

  • Sun Z, Hüve K, Vislap V, Niinemets Ü (2013) Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. J Exp Bot 64:5509–5523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tieszen LL (1973) Photosynthesis and respiration in arctic tundra grasses: field light intensity and temperature responses. Arct Alp Res 5:239–251

  • Tieszen LL, Sigurdson DC (1973) Effect of temperature on carboxylase activity and stability in some Calvin cycle grasses from the arctic. Arct Alp Res 5:59–66

    CAS  Google Scholar 

  • Uemura K, Miyachi S, Yokota A (1997) Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571

    CAS  PubMed  Google Scholar 

  • Valladares F, Niinemets Ü (2007) The architecture of plant crowns: from design rules to light capture and performance. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. CRC Press, Boca Raton, pp 101–149

    Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    CAS  PubMed  Google Scholar 

  • Wang M, Kapralov MV, Anisimova M (2011) Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco. BMC Evol Biol 11:266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) PHYLOCOM: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:2098–2100

    CAS  PubMed  Google Scholar 

  • Weber DJ, Andersen WR, Hess S, Hansen DJ, Gunasekaran M (1977) Ribulose-1,5-bisphosphate carboxylase from plants adapted to extreme environments. Plant Cell Physiol 18:693–699

    CAS  Google Scholar 

  • Westoby M, Cunningham S, Fonseca C, Overton J, Wright IJ (1998) Phylogeny and variation in light capture area deployed per unit investments in leaves: designs for selecting study species with a view to generalizing. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Backhuys Publishers, Leiden, pp 539–566

    Google Scholar 

  • Westoby M, Falster D, Moles A, Vesk P, Wright I (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Google Scholar 

  • Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot 59:1909–1921

    CAS  PubMed  Google Scholar 

  • Whitney SM, Kane HJ, Houtz RL, Sharwood RE (2009) Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2. Plant Physiol 149:1887–1895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011a) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (2011b) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA 108:14688–14693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wildner GF, Schlitter J, Stutzel T (1999) Phylogenetic analysis of the C-terminal sequence of rbcL. Plant Biol 1:656–664

    CAS  Google Scholar 

  • Yaguchi M, Roy C, Watson DC, Rollin F, Tan LUL, Senior DJ, Saddler JN (1992) The amino acid sequence of the 20 kD xylanase from Trichoderma harzianum E58. In: Visser J, Beldman J, Van-Someren MAK, Voragen AGJ (eds) Xylan and xylanases. Elsevier Science BV, Amsterdam, pp 435–438

    Google Scholar 

  • Yaguchi T, Oguni A, Ouchiyama N, Igarashi Y, Kodama T (1996) A non-radioisotopic anion-exchange chromatographic method to measure the CO2/O2 specificity factor for ribulose bisphosphate carboxylase/oxygenase. Biosci Biotechnol Biochem 60:942–944

    CAS  Google Scholar 

  • Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547

    CAS  Google Scholar 

  • Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I (2006) Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ 29:1659–1670

    CAS  PubMed  Google Scholar 

  • Yamori W, Noguchi K, Hikosaka K, Terashima I (2009) Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant Cell Physiol 50:203–215

    CAS  PubMed  Google Scholar 

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ 34:764–777

    CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    CAS  PubMed  Google Scholar 

  • Yokota A, Kitaoka S (1985) Correct pK values for dissociation constant of carbonic acid lower the reported K m values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131:1075–1079

    CAS  PubMed  Google Scholar 

  • Yoon M, Putterill JJ, Ross GS, Laing WA (2001) Determination of the relative expression levels of Rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends. Anal Biochem 291:237–244

    CAS  PubMed  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–460

    Google Scholar 

  • Zhu XG, Jensen RG, Bohnert HJ, Wildner GF, Schlitter J (1998) Dependence of catalysis and CO2/O2 specificity of Rubisco on the carboxy-terminus of the large subunit at different temperatures. Photosynth Res 57:71–79

    CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Spanish Ministry of Science and Innovation (AGL2009-07999 and AGL2013-42364), the Estonian Ministry of Science and Education (Institutional Grant IUT-8-3) and the European Commission through the European Regional Fund (The Center of Excellence in Environmental Adaptation). We appreciate the insightful comments and discussions on the manuscript from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Galmés.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 226 kb)

Supplementary material 2 (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galmés, J., Kapralov, M.V., Copolovici, L.O. et al. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth Res 123, 183–201 (2015). https://doi.org/10.1007/s11120-014-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0067-8

Keywords

Navigation