Skip to main content
Log in

Interaction of ascorbate with photosystem I

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers \( {\text{P}}_{700}^{ + } \) and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to \( {\text{P}}_{ 7 0 0}^{ + } \) via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to \( {\text{P}}_{700}^{ + } \). Otherwise, inactivation of Pc with CN ions inhibited electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \). This proves that the main route of electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to \( {\text{P}}_{700}^{ + } \) is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of \( {\text{P}}_{700}^{ + } \). The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to \( {\text{P}}_{700}^{ + } \), ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AFR:

Ascorbate free radical

APX:

Ascorbate peroxidase

AscH :

Anionic form of ascorbate (fully reduced form of ascorbate)

\( {\text{Asc}}^{ \bullet - } \) :

Anionic form of monodehydroascorbate radical

DHA:

Dehydroascorbate (fully oxidized form of ascorbate)

CEF:

Cyclic electron flow

Cl2NQ:

2,3-dichloro-1,4-naphthoquinone

DCMU:

3-(3,4-dichlorophenyl)-1,1′-dimethyl urea

DCPIP:

2,6-dichlorophenolindophenol

FX, FA, FB :

Fe4S4 clusters on the acceptor side of photosystem I

Fd:

Ferredoxin

FNR:

Ferredoxin-NADP-oxidoreductase

FRL:

Far-red light

EPR:

Electron paramagnetic resonance

ETC:

Electron transport chain

FeCy:

Ferricyanide

GSH:

Reduced glutathione

LEF:

Linear electron flow

MDA:

Monodehydroascorbate

MV:

Methylviologen

\( {\text{O}}_{ 2}^{ \bullet - } \) :

Superoxide radical

PhQ:

Phylloquinone

Pc:

Plastocyanin

PQ:

Plastoquinone

PQH2 :

Plastoquinol

PSI:

Photosystem I

PSII:

Photosystem II

P700 :

Reduced form of electron donor of PSI

\( {\text{P}}_{700}^{ + } \) :

Oxidized form of electron donor of PSI

ROS:

Reactive oxygen species

RL:

Red light

SOD:

Superoxide dismutase

VDE:

Violaxanthin deepoxidase

WL:

White light

WOC:

Water-oxidizing complex

WT:

Wild type

WWC:

Water–water cycle

ΔpH:

Transthylakoid pH difference

References

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    PubMed  CAS  Google Scholar 

  • Berg SP, Krogmann DW (1975) Mechanism of KCN inhibition of photosystem I. J Biol Chem 250:8957–8962

    PubMed  CAS  Google Scholar 

  • Boichenko VA (1998) Action spectra and functional antenna sizes of photosystems I and II in relation to the thylakoid membrane organization and pigment composition. Photosynth Res 58:163–174

    Article  CAS  Google Scholar 

  • Creutz C (1981) The complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452

    Article  CAS  Google Scholar 

  • Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen-evolving complex: an X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry 34:5274–5287

    Article  PubMed  CAS  Google Scholar 

  • Eskling M, Akerlund H-E (1998) Changes in the quantities of violaxanthin deepoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light. Photosynth Res 57:41–50

    Article  CAS  Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophylls cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Forti G, Ehrenheim AM (1993) The role of ascorbic acid in photosynthetic electron transport. Biochim Biophys Acta 1183:408–412

    Article  CAS  Google Scholar 

  • Forti G, Elli G (1995) The function of ascorbic acid in photosynthetic phosphorylation. Plant Physiol 109:1207–1211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Forti G, Elli G (1996) Stimulation of photophosphorylation by ascorbate as a function of light intensity. Plant Physiol 112:1509–1511

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foyer CH, Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148:391–398

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interference between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaves protoplasts and chloroplasts during illumination. Planta 157:239–244

    Article  PubMed  CAS  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Botany 64:33–53

    Article  CAS  Google Scholar 

  • Grace S, Pace R, Wydrzynski T (1995) Formation and decay of monodehydroascorbate radicals in illuminated thylakoids as determined by EPR spectroscopy. Biochim Biophys Acta 1229:155–165

    Article  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Ivanov B (2000) The competition between methyl viologen and monodehydroascorbate radical as electron acceptors in spinach thylakoids and intact chloroplasts. Free Radic Res 33:217–227

    Article  PubMed  CAS  Google Scholar 

  • Ivanov BN (2014) Role of ascorbic acid in photosynthesis. Biochemistry (Moscow) 79:282–289

    Article  CAS  Google Scholar 

  • Ivanov BN, Sacksteder KA, Kramer DM, Edwards G (2001) Light-induced ascorbate-dependent electron transport and membrane energization in chloroplasts of bundle sheath cells of the C4 plant maize. Arch Biochem Biophys 385:145–153

    Article  PubMed  CAS  Google Scholar 

  • Ivanov BN, Asada K, Kramer DM, Edwards G (2005) Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI. Planta 220:572–581

    Article  PubMed  CAS  Google Scholar 

  • Iyanagi T, Yamazaki I, Anan K (1985) One-electron oxidation-reduction properties of ascorbic acid. Biochim Biophys Acta 806:255–261

    Article  CAS  Google Scholar 

  • Izawa S, Kraayenhof R, Ruuge EK, Devault D (1973) The site of KCN in the photosynthetic electron transport pathway. Biochim Biophys Acta 314:328–339

    Article  PubMed  CAS  Google Scholar 

  • Johnson TW, Shen GZ, Zybailov B, Kolling D, Reategui R, Beauparlant S, Vassiliev IR, Bryant DA, Jones AD, Golbeck JH, Chitnis PR (2000) Recruitment of a foreign quinone into the A1 site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp PCC 6803. J Biol Chem 275:8523–8530

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kuvykin IV, Ptushenko VV, Vershubskii AV, Tikhonov AN (2011) Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2. Biochim Biophys Acta 1807:336–347

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Peterson RB (2005) Control of cytochrome b 6 f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708:79–90

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Talts E, Oja V, Eichelmann H, Peterson R (2010) Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Photosynth Res 103:79–95

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Oja V, Eichelmann H, Dall’Osto L (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochim Biophys Acta 1837:315–325

    Article  PubMed  CAS  Google Scholar 

  • Laroff GP, Fessenden RW, Schuler RH (1972) The electron spin resonance spectra of radical intermediates in the oxidation of ascorbic acid and related substances. J Am Chem Soc 94:9062–9073

    Article  PubMed  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ligeza A, Wisniewska A, Subczynski WK, Tikhonov AN (1994) Oxygen production and consumption by chloroplasts in situ and in vitro as studied with microscopic spin label probes. Biochim Biophys Acta 1186:201–208

    Article  PubMed  CAS  Google Scholar 

  • Malkin R (1986) Interaction of stigmatellin and DNP-INT with the Rieske iron–sulfur center of the chloroplast cytochrome b 6-f complex. FEBS Lett 208:317–320

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Ushimaru T, Asada K (1997) Ascorbate in thylakoids lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth Res 53:197–204

    Article  CAS  Google Scholar 

  • Mano J, Ohno C, Domae Y, Asada K (2001) Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochim Biophys Acta 1504:275–287

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Hideg E, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochim Biophys 429:71–80

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoproduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of monodehydroascorbate radicals in spinach thylakoids. Plant Cell Physiol 35:539–549

    CAS  Google Scholar 

  • Molin YN, Salikhov KM, Zamaraev KI (1980) Spin Exchange: Principles and Applications in Chemistry and Biology. Springer, Berlin

    Book  Google Scholar 

  • Mula S, Savitsky A, Möbius K, Lubitz W, Golbeck JH, Mamedov MD, Semenov AYu, van der Est A (2012) Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature. Photochem Photobiol Sci 11:946–956

    Article  PubMed  CAS  Google Scholar 

  • Müller-Moulé P, Conclin PL, Niyogy KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Ouitrakul K, Izawa S (1973) Electron transport and photophosphorylation in chloroplasts as a function of the electron transport. Biochim Biophys Acta 305:105–118

  • Prince RC, Dutton PL, Bruce JM (1983) Electrochemistry of ubiquinones, menaquinones and plastoquinones in aprotic solvents. FEBS Lett 160:273–276

    Article  CAS  Google Scholar 

  • Ptushenko VV, Ikryannikova LN, Grigor’ev IA, Kirilyuk IA, Trubitsin BV, Tikhonov AN (2006) Interaction of imidazoline and imidazolidine-based derivatives of nitroxide radicals with chloroplasts. Appl Magn Reson 30:329–343

  • Ptushenko VV, Cherepanov DA, Krishtalik LI, Semenov AY (2008) Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynth Res 97:55–74

    Article  PubMed  CAS  Google Scholar 

  • Pushkar YN, Karyagina I, Stehlik D, Brown S, van der Est A (2005) Recruitment of a foreign quinone into the A1 site of photosystem I. Consecutive forward electron transfer from A0 to A1 to FX with anthraquinone in the A1 site as studied by transient EPR. J Biol Chem 280:12382–12390

    Article  PubMed  CAS  Google Scholar 

  • Semenov AYu, Vassiliev IR, van der Est A, Mamedov MD, Zybailov B, Shen GZ, Stehlik D, Diner BA, Chitnis PR, Golbeck JH (2000) Recruitment of a foreign quinone into the A1 site of photosystem I. Altered kinetics of electron transfer in phylloquinone biosynthetic pathway mutants studied by time-resolved optical, EPR, and electrometric techniques. J Biol Chem 275:23429–23438

    Article  PubMed  CAS  Google Scholar 

  • Sétif P, Meimberg K, Mühlenhoff U, Boussac A (2004) Photoaccumulation of two ascorbyl free radicals per photosystem I at 200 K. Biochim Biophys Acta 1656:203–213

    Article  PubMed  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch Teil B 24:1588–1598

    CAS  Google Scholar 

  • Takahashi H, Clowez S, Wollman F-A, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled, but independent of state transition. Nat Commun 4:1954. doi:10.1038/ncomms2954

    PubMed  PubMed Central  Google Scholar 

  • Tikhonov AN (2012) Energetic and regulatory role of proton potential in chloroplasts. Biochemistry (Moscow) 77:956–974

    Article  CAS  Google Scholar 

  • Tikhonov AN (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b 6 f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem. doi:10.1016/j.plaphy.2013.12.011

    PubMed  Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK, Blumenfeld LA (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim Biophys Acta 637:321–333

    Article  CAS  Google Scholar 

  • Tikhonov AN, Agafonov RV, Grigor’ev IA, Kirilyuk IA, Ptushenko VV, Trubitsin BV (2008) Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochim Biophys Acta 1777:285–294

    Article  PubMed  CAS  Google Scholar 

  • Tóth SZ, Puthur JT, Nagi V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen evolving complexes. Plant Physiol 149:1568–1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Tóth SZ, Nagi V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Trubitsin BV, Tikhonov AN (2003) Determination of a transmembrane pH difference in chloroplasts with a spin label Tempamine. J Magn Reson 163:257–269

    Article  PubMed  CAS  Google Scholar 

  • Trubitsin BV, Mamedov MD, Vitukhnovskaya LA, Semenov AYu, Tikhonov AN (2003) EPR study of light-induced regulation of photosynthetic electron transport in Synechocystis sp. strain PCC 6803. FEBS Lett 544:15–20

  • Trubitsin BV, Ptushenko VV, Koksharova OA, Mamedov MD, Vitukhnovskaya LA, Grigor’ev IA, Semenov AYu, Tikhonov AN (2005) EPR study of electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Biochim Biophys Acta 1708:238–249

    Article  PubMed  CAS  Google Scholar 

  • van der Est A, Pushkar Y, Karyagina I, Fonovic B, Dudding T, Niklas J, Lubitz W, Golbeck JH (2010) Incorporation of 2,3-disubstituted-1,4-naphthoquinones into the A1 binding site of photosystem I studied by EPR and ENDOR spectroscopy. Appl Magn Reson 37:65–83

    Article  Google Scholar 

  • van Duijn MM, Van der Zee J, Van den Broek PJA (1998) Electron spin resonance study on the formation of ascorbate free radical from ascorbate: the effect of dehydroascorbic acid and ferricyanide. Protoplasma 205:122–128

    Article  Google Scholar 

  • Webber AN, Lubitz W (2001) P700: the primary electron donor of photosystem I. Biochim Biophys Acta 1507:61–79

    Article  PubMed  CAS  Google Scholar 

  • Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253:287–289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita T, Butler WL (1968) Photoreduction and photophosphorylation with Tris-washed chloroplasts. Plant Physiol 43:1978–1986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants 12-04-01267a, 12-04-00821, and 13-04-40299-H from the Russian Foundation for Basic Researches. We thank Dr. O.A. Koksharova for growing cyanobacteria cells, Dr. V.N. Kurashov for valuable help in isolation of PSI complexes, and Dr. V.V. Ptushenko for generous supplying us with N2 gas. We thank Dr. Enno Ruuge for a valuable gift of stigmatellin. We also thank Dr. Agu Laisk for the critical reading of the manuscript, useful comments, and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsin, B.V., Mamedov, M.D., Semenov, A.Y. et al. Interaction of ascorbate with photosystem I. Photosynth Res 122, 215–231 (2014). https://doi.org/10.1007/s11120-014-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0023-7

Keywords

Navigation