Skip to main content
Log in

The Sharp Sobolev Inequality on Metric Measure Spaces with Lower Ricci Curvature Bounds

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We show that the sharp Sobolev inequality as known for Riemannian manifolds with a positive lower bound on the Ricci curvature holds in the same form for metric measure spaces satisfying the RCD*(K, N) condition for positive K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: An overview on calculus and heat flow in metric measure spaces and spaces with Riemannian curvature bounded from below. Analysis and geometry of metric measure spaces, pp. 1–25 (2013)

  2. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geometry 11(4), 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. Modelling and optimisation of flows on networks, pp. 1–155 (2013)

  5. Ambrosio, L., Gigli, N., Savaré, G.: Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case. Analysis and numerics of partial differential equations, pp. 63–115 (2013)

  6. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry-Émery condition, the gradient estimates and the local-to-global property of R C D *(K, N) metric measure spaces. J. Geom. Anal. 1–33 (2014)

  9. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. Lectures on probability theory (Saint-Flour, 1992), pp. 1–114 (1994)

  10. Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  11. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., pp. 177–206 (1985)

  12. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer, Cham (2014)

    Book  Google Scholar 

  13. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23(2, suppl.), 245–287 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 1–79 (2014)

  16. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in R C D *(K,N) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1999)

  19. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (688), x+101 (2000)

    MathSciNet  Google Scholar 

  20. Ilias, S.: Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier (Grenoble) 33(2), 151–165 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44(3–4), 477–494 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rothaus, O.S.: Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal. 42(1), 102–109 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rothaus, O.S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42(1), 110–120 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rothaus, O.S.: Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal. 65(3), 358–367 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong \(CD(K,\infty )\)-spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 831–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saloff-Coste, L.: Sobolev inequalities in familiar and unfamiliar settings. Sobolev spaces in mathematics. I. Int. Math. Ser. (N. Y.), pp. 299–343 (2009)

  29. Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \(\text {RCD}(K,\infty )\) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196 (1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Villani, C.: Optimal transport. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Profeta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Profeta, A. The Sharp Sobolev Inequality on Metric Measure Spaces with Lower Ricci Curvature Bounds. Potential Anal 43, 513–529 (2015). https://doi.org/10.1007/s11118-015-9485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9485-2

Keywords

Mathematics Subject Classification (2010)

Navigation