Skip to main content

Advertisement

Log in

Establishment of a Core Collection of Traditional Cuban Theobroma cacao Plants for Conservation and Utilization Purposes

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Presently, Theobroma cacao L. (cacao) in Cuba is mainly cultivated in the eastern region where plantations comprise a mixture of clonal varieties, hybrids, progeny of Trinidad Selected Hybrids, and traditional—also known as ancient—cacao. The ancient genetic resources, probably the plants most closely related to the original introductions, are endangered by their progressive replacement by modern clones. To promote the conservation and utilization of these genetic resources, a representative sample of 537 traditional Cuban cacao plants was used to develop a core collection. Core collections based on 15 simple sequence repeat (SSR) markers were generated using five different sampling algorithms: random sampling, simulated annealing, stepwise clustering with random sampling, the M strategy, and maximum genetic diversity. The five core collections were designed to capture 95 % of the SSR alleles in the complete collection. The genetic, morphological, and geographical diversity of each core collection was compared with that of the entire collection. The entire collection contained 139 alleles, including 104 rare ones, with the 95 % allelic coverage threshold achieved with 133 alleles. The core collection generated by the maximum genetic diversity algorithm had the lowest number of accessions (185), the highest mean genetic distance (0.486), the lowest morphological character redundancy, and the highest diversity as assessed by the mean Shannon-Weaver diversity index (0.757). This core collection can thus serve as the basis of future improvement programs based on local genetic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrama HA, Yan WG, Lee F, Fjellstrom R, Chen MH, Jia M, McClung A (2009) Genetic assessment of a mini-core subset developed from the USDA rice genebank. Crop Sci 49:1336–1346

    Article  Google Scholar 

  • Aho K, Winston V, Roberts D (2013) Asbio: a collection of statistical tools for biologists. Version 0.4-11

  • Bekele F, Butler DR (2000) Proposed short list of cocoa descriptors for characterisation. Paper presented at the Working procedures for cocoa germplasm evaluation and selection. In: Eskes AB, Engels JMM, Lass RA (eds) Proceedings of the CFC/ICCO/IPGRI Project Workshop. IPGRI, Montpellier, pp 41–48

    Google Scholar 

  • Bidot Martínez I, Riera Nelson M, Flamand M-C, Bertin P (2015) Genetic diversity and population structure of anciently introduced Cuban cacao plants. Genet Resour Crop Evol 62:67–84. doi:10.1007/s10722-014-0136-z

    Article  Google Scholar 

  • Bidot Martínez I, Valdez de la Cruz M, Riera Nelson M, Bertin P (2016) Morphological characterization of traditional cacao (Theobroma cacao L.) plants in Cuba. Genet Resour Crop Evol. doi: 10.1007/s10722-015-0333-4

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457. doi:10.1038/368455a0

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD (1989) Core collection: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Brown JS, Sautter RT, Olano CT, Borrone JW, Kuhn DN, Motamayor JC, Schnell RJ (2008) A composite linkage map from three crosses between commercial clones of cacao, Theobroma cacao L. Trop Plant Biol 1:120–130

    Article  Google Scholar 

  • Çalişkan M (ed) (2012) Genetic diversity in plants. InTech, Croatia

    Google Scholar 

  • CIRAD (2013) CocoaGenDB. http://cocoagendb.cirad.fr/index.html. Accessed 18 April 2013.

  • R Core Team (2013) R: A language and environment for statistical computing. Version 3.01

  • de Mendiburu F (2013) Agricolae: statistical procedures for agricultural research. Version 1:1–4

    Google Scholar 

  • El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of mediterranean olive (Olea europaea L.) genetic resources. PLoS One 8(5):e61265. doi:10.1371/journal.pone.0061265

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (eds) (2007) Complementary strategies for ex situ conservation of coffee (Coffea arabica L.) genetic resources. A case study in CATIE, Costa Rica, Topical reviews in Agricultural Biodiverstity. Biodiversity International, Rome

    Google Scholar 

  • Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections. IPGRI handbooks for genebanks, vol 6, Rome.

  • Engels JMM, Bartley BGD, Enriquez GA (1980) Cacao descriptors, their stage and modus operandi. Turrialba 30(2):209–218

    Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Frankel OH, Brown AHD (1984) Current plant genetic resources—a critical appraisal. In: Chopra VL, Joshi BC, Sharma RP, Bansal HC (eds) Genetics: new frontiers, vol 4, Proceedings of the XV International Congress of Genetic. Oxford and IBH, New Delhi, pp 1–11

    Google Scholar 

  • Garkava-Gustavsson L, Persson HA, Nybom H, Rumpunen K, Gustavsson BA, Bartish IV (2005) RAPD-based analysis of genetic diversity and selection of lingonberry (Vaccinium vitis-idaea L.) material for ex situ conservation. Genet Resour Crop Evol 52:723–735

    Article  CAS  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:1–7. doi:10.1016/j.pbi.2010.01.004

    Article  Google Scholar 

  • Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Guiltinan MJ (2007) Cacao. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry, vol 60, Transgenic Crops V. Springer-Verlag, Berlin Heidelberg, pp 497–518

    Google Scholar 

  • Gustavsson L (2008) Genetic diversity in fruit and berry crops estimated with molecular markers. PhD thesis, Swedish University of Agricultural Sciences, Alnarp

  • Hu J, Zhu J, Xu HM (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998) The Spanish barley core collection. Genet Resour Crop Evol 45:475–481

    Article  Google Scholar 

  • Irish BM, Goenaga R, Zhang D, Schnell R, Brown JS, Motamayor JC (2010) Microsatellite fingerprinting of the USDA-ARS Tropical Agriculture Research Station cacao (Theobroma cacao L.) germplasm collection. Crop Sci 50:656–667

    Article  CAS  Google Scholar 

  • Jansen J, van Hintum T (2007) Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinform 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  Google Scholar 

  • Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinform 27:3070–3071. doi:10.1093/bioinformatics/btr521

    Article  CAS  Google Scholar 

  • Kim K-W, Chung H-K, Cho G-T, Ma K-H, Chandrabalan D, Gwag J-G, Kim T-S, Cho E-G, Park Y-J (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinform 23(16):2155–2162

    Article  CAS  Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2(4):141–162

    CAS  Google Scholar 

  • Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2141–2145

    Article  CAS  PubMed  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon A-F, Boursiquot J-M, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8(31):1–12. doi:10.1186/1471-2229-8-31

    Google Scholar 

  • Li Q, Xu Z, He T (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol Conserv 106:151–156

    Article  Google Scholar 

  • Lin Z, Wei Z, Jun C, Yong H, Xing S, Li L, Sheng Q (2011) Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi province based on ISSR marker. Afr J Biotechnol 10(40):7756–7765

    Article  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinform 21:2128–2129

    Article  CAS  Google Scholar 

  • Livingstone D, Royaert S, Stack C, Mockaitis K, May G, Farmer A, Saski C, Schnell R, Kuhn D, Motamayor JC (2015) Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao. DNA Res:1–15. doi:10.1093/dnares/dsv009

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Resour Crop Evol 47:515–526

    Article  Google Scholar 

  • Motamayor JC, Lachenaud P, da Silva JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3(10):e3311

    Article  PubMed  PubMed Central  Google Scholar 

  • Motilal LA, Zhang D, Mischke S, Meinhardt LW, Umaharan P (2013) Microsatellite-aided detection of genetic redundancy improves management of the International Cocoa Genebank, Trinidad. Tree Genet Genomes 9:1395–1411

    Article  Google Scholar 

  • Normah MN, Malik SK, Chaudhury R, Salma I, Makeen MA (2013) Conservation of tropical fruit genetic resources. In: Normah MN (ed) Conservation of tropical plant species. Springer Science + Business Media, New York, pp 137–170

    Chapter  Google Scholar 

  • Núñez N (2010) El cacao y el chocolate en Cuba, 2nd edn. Fundación Fernando Ortíz, La Habana

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinform Appl Note 20(2):289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  Google Scholar 

  • Ramanatha V, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68:1–19

    Article  Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC, Geethanjali S, Ebert AW (2012) Using SSR markers to map genetic diversity and population structure of Solanum pimpinellifolium for development of a core collection. Plant Genet Resour: Charact Util 10(1):38–48

    Article  CAS  Google Scholar 

  • Reeves PA, Panella LW, Richards CM (2012) Retention of agronomically important variation in germplasm core collections: implications for allele mining. Theor Appl Genet 124(6):1155–1171. doi:10.1007/s00122-011-1776-4

    Article  PubMed  Google Scholar 

  • Saunders JA, Mischke S, Leamy EA, Hemeida AA (2004) Selection of international molecular standards for DNA fingerprinting of Theobroma cacao. Theor Appl Genet 110:41–47

    Article  CAS  PubMed  Google Scholar 

  • Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinform 27(4):592–593

    Article  CAS  Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci U S A 90:10623–10627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. Urbana Press, University of Illinois, Champaign, IL

    Google Scholar 

  • Sounigo O, Bekele FL, Iwaro AD, Thévenin JM, Bidaisee G, Umaharan R, Sankar A, Sukha DA, Motilal LA, Butler DR, Eskes A (2006) Description of cocoa clones proposed for the CFC/ICCO/IPGRI project collection. In: Eskes A, Yoel E (eds) Global approaches to cocoa germplasm utilization and conservation: Final report of the CFC/ICCO/IPGRI project on “Cocoa germplasm utilization and conservation: A global approach” (1998–2004). Amsterdam, pp 67–81

  • Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI Technical Bulletin, vol 10. IPGRI, Rome

    Google Scholar 

  • Studnicki M, Mądry W, Schmidt J (2013) Comparing the efficiency of sampling strategies to establish a representative in the phenotypic-based genetic diversity core collection of orchardgrass (Dactylis glomerata L.). Czech J Genet Plant Breed 2013(1):36–47

    Google Scholar 

  • Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF (2009) Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinform 10:243

    Article  Google Scholar 

  • Turnbull CJ, Hadley P. International Cocoa Germplasm Database (ICGD) (2011) NYSE Liffe/CRA Ltd./University of Reading, UK. http://www.icgd.reading.ac.uk Accessed 12/7/2013

  • USDA-ARS (2013) Germplasm Resources Information Network - (GRIN). National Germplasm Resources Laboratory. http://www.ars-grin.gov/. Accessed 18 April 2013.

  • van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletins No. 3. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • van Hintum TJL, Sackville Hamilton NR, Engels JMM, van Treuren R (2002) Accession management strategies: splitting and lumping. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity., pp 113–120

    Google Scholar 

  • Zhang D, Mischke S, Goenaga R, Hemeida AA, Saunders JA (2006) Accuracy and reliability of high-throughput microsatellite genotyping for cacao clone identification. Crop Sci 46:2084–2092. doi:10.2135/cropsci2006.01.0004

    Article  CAS  Google Scholar 

  • Zhang D, Mischke S, Johnson ES, Phillips-Mora W, Meinhardt L (2009) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genet Genomes 5:1–10

    Article  Google Scholar 

  • Zhao W, Cho GT, Ma KH, Chung JW, Gwag JG, Park YJ (2010) Development of an allele mining set in rice using a heuristic algorithm and SSR genotype data with least redundancy for the post-genomic era. Mol Breed 26:639–651

    Article  Google Scholar 

  • Zorić M, Dodig D, Kobiljski B, Quarrie S, Barnes J (2012) Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica 140:259–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Commission de Coopération au Développement of Belgium (ARES-CCD) for financial support. We are also grateful to farmers, researchers, and technicians of the IIAB and the staff of the Cuban provincial agricultural delegations for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bertin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidot Martínez, I., Valdés de la Cruz, M., Riera Nelson, M. et al. Establishment of a Core Collection of Traditional Cuban Theobroma cacao Plants for Conservation and Utilization Purposes. Plant Mol Biol Rep 35, 47–60 (2017). https://doi.org/10.1007/s11105-016-0999-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-0999-6

Keywords

Navigation