We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

DNA Methylation Changes Induced in Rice by Exposure to High Concentrations of the Nitric Oxide Modulator, Sodium Nitroprusside

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a signaling molecule that participates at physiological concentrations in diverse regulatory pathways. However, when NO concentration reaches levels higher than normal, it is sensed as a stress, which results in epigenetic alterations and chromatin remodeling in plants. Here, we showed that exposure to 0.5 mM of sodium nitroprusside (SNP), a NO donor, induces stress symptoms in rice seedlings that result in complete growth inhibition. Moreover, these stress symptoms in SNP-treated plants were found to be associated with methylation changes in genomic DNA, which predominantly involve hypomethylation at the CHG sites. Concomitant with these changes, transcriptional activation of a number of genes and transposable elements (TEs) was also observed. Further analysis revealed that expression of four genes, Chromomethylase 3 (OsCMT3), deficient in DNA methylation 1 (OsDDM1a), OsDDM1b, and DEMETER (OsDME), involved in chromatin remodeling and DNA methylation homoeostasis have been specifically perturbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887

    Article  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kosmala A (2011) Are nitric oxide donors a valuable tool to study the functional role of nitric oxide in plant metabolism? Plant Biol 13:747–756

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Bethke PC, Libourel IGL, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75

    Article  CAS  PubMed  Google Scholar 

  • Böhm FMLZ, Ferrarese MLL, Zanardo DIL, Magalhaes JR, Ferrarese-Filho O (2010) Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiol Plant 32:1039–1046

    Article  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification-heritable responses to environmental stress? Curr Opin Plant Biol 14:260–266

    Article  PubMed  Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitivedisease-resistance response. Plant Physiol Biochem 40:605–610

    Article  CAS  Google Scholar 

  • Ding Y, Wang X, Su L, Zhai JX, Cao SY, Zhang DF, Liu CY, Bi YP, Qian Q, Cheng ZK, Chu CC, Cao XF (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:19–22

    Google Scholar 

  • Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205

    Article  CAS  PubMed  Google Scholar 

  • Ederli L, Reale L, Madeo L, Ferranti F, Gehring C, Fornaciari M, Romano B, Pasqualini S (2009) NO release by nitric oxide donors in vitro and in planta. Plant Physiol Biochem 47:42–48

    Article  CAS  PubMed  Google Scholar 

  • Fillippou P, Antoniou C, Yelamanchili S, Fotopoulos V (2012) NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatuls plants. Plant Physiol Biochem 60:115–118

    Article  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic endogenous NO-related response in plants? Planta 224:1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Gould KS, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He XJ, Chen TP, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He JY, Ren YF, Chen XL, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    Article  CAS  PubMed  Google Scholar 

  • Higo H, Tahir M, Takashima K, Miura A, Watanabe K, Tagiri A, Ugaki M, Ishikawa R, Eiguchi M, Kurata N, Sasaki T, Richards E, Takano M, Kishimoto N, Kakutani T, Habu Y (2012) DDM1 (decrease in DNA methylation) genes in rice (Oryza sativa). Mol Genet Genomics 287:785–792

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li N, Xu C, Zhong S, Lin X, Yang J, Zhou T, Yuliang A, Wu Y, Chen YR, Cao X, Zemach A, Rustgi S, von Wettstein D, Liu B (2014) Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci USA

  • Huang X, Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    Article  PubMed Central  PubMed  Google Scholar 

  • Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, Von Wettstein D, Liu B (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libourel IG, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCalum CM, Henikoff S, Jacobsen SE (2001) Requirement of chromomethylase3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Zhan SH (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    Article  CAS  PubMed  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide ameliorates stress responses in plants. Plant Soil Environ 57:95–100

    CAS  Google Scholar 

  • Moreau M, Lindermay C, Durner J, Daniel F (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  PubMed  Google Scholar 

  • Ngezahayo F, Xu CM, Wang HY, Jiang LL, Pang JS, Liu B (2009) Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice. BMC Plant Biol 9:91

    Article  PubMed Central  PubMed  Google Scholar 

  • Nunoshiba T, deRojas-Walkr T, Wishnok JS, Tannenbaum SR, Demple B (1993) Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci U S A 21:9993–9997

    Article  Google Scholar 

  • Ou XF, Zhang YH, Xu CM, Lin XY, Zang Q, Zhuang TT, Jiang LL, Wettstein DV, Liu B (2012) Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 7:e41143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  CAS  PubMed  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    Article  CAS  PubMed  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric Oxide-mediated transcriptional changes in Arabidopsis thaliana. MPMI 16:1094–1105

    Article  CAS  PubMed  Google Scholar 

  • Pontes O, Li CF, Costa Nunes P, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arobidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126:79–92

    Article  CAS  PubMed  Google Scholar 

  • Qiao WH, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Ramsahoye B, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarsan M, Prasad M (2013) Epigenetic mechanism of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2014) Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomic 14:47–58

    Article  CAS  Google Scholar 

  • Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Malik G, Deveshwar P, Tyagi AK, Kapoor S, Kapoor M (2009) Rice cytosine DNA methyltransferases: gene expression profiling during reproductive development and abiotic stress. FEBS J 276:6301–6311

    Article  CAS  PubMed  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Nitrate transport in chloroplast inner envelope vesicles. Plant Physiol 112:1375–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultravio let-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34:909–921

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809:360–368

    Article  CAS  PubMed  Google Scholar 

  • Wang NN, Wang HY, Wang H, Zhang D, Wu Y, Ou XF, Liu S, Dong ZY, Liu B (2010) Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biol 10:190

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson I, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Fu GF, Tao LX, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Ding F, Duan XH, Zhang J, Li XN, Yang YL (2014) ROS generation and proline metabolism in calli of halophyte Nitraria tangutorum Bobr. to sodium nitroprusside treatment. Protoplasma 251:71–80

    Article  CAS  PubMed  Google Scholar 

  • Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Breusegem FV (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng LP, Zhang B, Zou T, Chen ZH, Wang JW (2010) Nitric oxide interacts with reactive oxygen species to regulate oligosaccharide-induced artemisinin biosynthesis in Artemisia annua hairy roots. J Med Plant Res 4:758–765

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 31200198), the State Key Basic Research and Development Plan of China (2013CBA01404), the Ministry of Education of China (No.20120043120012), and the Joint Center for Plant Genetic Research between Northeast Normal University and Washington State University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

XFO, TTZ, SR, and BAL conceived and designed the experiments. XFO, TTZ, WCY, YLM, BW, YHZ, and LXY performed the experiments. CMX contributed reagents/ materials/analysis tools. XFO, BL, SR, and DvW wrote the paper.

Conflict of Interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Rustgi or Bao Liu.

Additional information

Xiufang Ou and Tingting Zhuang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 18 kb)

Table S2

(DOCX 20 kb)

Table S3

(DOCX 16 kb)

Fig. S1

(DOCX 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, X., Zhuang, T., Yin, W. et al. DNA Methylation Changes Induced in Rice by Exposure to High Concentrations of the Nitric Oxide Modulator, Sodium Nitroprusside. Plant Mol Biol Rep 33, 1428–1440 (2015). https://doi.org/10.1007/s11105-014-0843-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0843-9

Keywords

Navigation