Skip to main content

Advertisement

Log in

Genetic Divergence and Biogeographical Patterns in Amentotaxus argotaenia Species Complex

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The Amentotaxus argotaenia (Taxaceae) species complex is comprised of four relict and endangered gymnosperms. Amentotaxus argotaenia and A. yunnanensis are scattered throughout South and Central China, and A. formosana, and A. poilanei are restricted to Taiwan and Vietnam. In the present study, we examined genetic divergence and biogeographical patterns in the species complex based on chloroplast DNA atpI-atpH and rpS16-trnK intergenic spacers, the mitochondrial DNA nad1 intron, and microsatellite markers. Genealogical analyses revealed systematic inconsistencies between organellar DNA markers, with paraphyletic species inferred based on cpDNA, versus a monophyletic A. formosana, and clustering of A. poilanei within A. yunnanensis at mtDNA. AMOVA revealed that most organellar DNA variants resided among species and populations, a pattern also supported by clustering with STRUCTURE analyses on microsatellites. Higher levels of genetic diversity in the Yongxin population of A. argotaenia reflected features of a refugium. Most speciation events were rather recent, with divergence no earlier than 2.50 MYA, although many ancient lineages derived 4.12–13.84 MYA were maintained within species. Significant genetic structuring within A. argotaenia was detected among three geographical regions—a phylogeographical pattern likely attributable to past fragmentations. In contrast to paraphyletic A. argotaenia based on the maintenance of ancestral polymorphisms, interspecific hybridization likely contributed to polyphyly in A. yunnanensis. Furthermore, despite the low likelihood of recurrent gene flow due to geographical isolation, IM analyses revealed continued interspecific gene flow after species divergence, reflecting a parapatric speciation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3
Fig. 4a,b
Fig. 5a–e

Similar content being viewed by others

References

  • Axelrod I, Ai-Shehba I, Raven PH (1996) History of the modern flora of China. In: Zhang A, Wu A (eds) Floristic characteristics and diversity of East Asian plants. Springer, New York, pp 43–55

    Google Scholar 

  • Belshaw R, Katzourakis A (2005) BlastAlign: a program that uses blast to align problematic nucleotide sequences. Bioinformatics 21:122–123

    Article  CAS  PubMed  Google Scholar 

  • Cheng WC (1978) Flora Republicae Popularis Sinicae. vol. 7, The genus Amentotaxus, vol 7. Science, Beijing

    Google Scholar 

  • Chiang TY, Schaal BA (2006) Phylogeography of plants in Taiwan and the Ryukyu Archipelago. Taxon 55:3–41

    Article  Google Scholar 

  • Chiang TY, Chiang YC, Chou CH, Havanond S, Hong TN, Huang S (2001) Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondria DNAs. Mol Ecol 10:2697–2710

    Article  CAS  PubMed  Google Scholar 

  • Chiang TY, Hung KH, Hsu TW, Wu WL (2004) Lineage sorting and phylogeography in Lithocarpus formosanus and L. dodonaeifolius (Fagaceae) from Taiwan. Ann Mo Bot Gard 91:207–222

    Google Scholar 

  • Chiang YC, Hung KH, Schaal BA, Ge XJ, Hsu TW, Chiang TY (2006) Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchensis complex. Mol Ecol 15:765–779

    Article  CAS  PubMed  Google Scholar 

  • Chiang YC, Hung KH, Moore SJ, Ge XJ, Huang S, Hsu TW, Schaal BA, Chiang TY (2009) Paraphyly of organelle DNAs in Cycas sect. Asiorientales due to ancient ancestral polymorphisms. BMC Evol Biol 9:161

    Article  PubMed Central  PubMed  Google Scholar 

  • Comes HP, Kaderaeit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438

    Article  Google Scholar 

  • DeChaine EG, Martin AP (2005) Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am J Bot 92:477–486

    Article  CAS  PubMed  Google Scholar 

  • Del Tredici P, Lin G, Yang G (1992) The Ginkgos of Tian Mu Shan. Conserv Biol 4:202–209

    Article  Google Scholar 

  • Dias P, Assis LCS, Udulutsch RG (2005) Monophyly vs paraphyly in plant systematics. Taxon 54:1039–1040

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136:343–359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  • Farjon A (2010) A handbook of the world’s conifers. Brill, Leiden

    Book  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2007) PHYLIP (Phylogeny Inference Package), version 3.67, Department of Genetics, University of Washington, Seattle.

  • Ferguson DK, Jahnichen H, Alvin KL (1978) Amentotaxus Pilger from the European Tertiary. Feddes Repert 89:379–410

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ge XJ, Zhou XL, Li ZC, Hsu TW, Schaal BA, Chiang TY (2005) Genetic structure of the relict Amentotaxus argotaenia complex (Taxaceae) based on ISSR fingerprinting. J Plant Res 118:415–422

    Article  CAS  PubMed  Google Scholar 

  • Ge XJ, Hsu TW, Hung KH, Lin CJ, Huang CC, Huang CC, Chiang YC, Chiang TY (2012) Inferring multiple refugia and phylogeographical patterns in Pinus massoniana based on nucleotide sequence variation and fingerprinting. PLoS One 7:e43717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT Version 2.9.3.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenetd Evol 12:115–123

    Article  CAS  Google Scholar 

  • Harris TM (1976) Two neglected aspects of fossil conifers. Am J Bot 63:902–910

    Article  Google Scholar 

  • Harrison SP, Yu G, Takahar H, Prentice IC (2001) Diversity of temperate plants in east Asia. Nature 413:129–130

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates, and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho CS, Chen CT, Ko YZ, Ge XJ, Hung KH, Hsu TW, Chiang YC (2012) Isolation and characterization of 15 microsatellite loci in four endangered Amentotaxus species (Taxaceae). Am J Bot 99:e157–159

    Article  PubMed  Google Scholar 

  • IUCN (2013) The IUCN Red List of Threatened Species. Version 2013.2 http://www.iucnredlist.org

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109:16217–16221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HL, Keng H (1994) Amentotaxaceae. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, 2nd edn. Vol. 1. Department of Botany, National Taiwan University, Taipei, pp 553–554

  • Lin CC (1966) An outline of Taiwan’s Quaternary geohistory with a special discussion of the relation between natural history and cultural history in Taiwan. Bull Dept Archaeol Anthropol 23:7–44

    Google Scholar 

  • Liu KB (1988) Quaternary history of the temperate forests of China. Q Sci Rev 7:1–20

    Article  Google Scholar 

  • Liu HP (1991) The spore-pollen communities and paleoenvironment since Quaternary in the reach of Chang Jiang River. J Huazhong Normal Univ Nat Sci 2:236–241

    Google Scholar 

  • Matos JA, Schaal BA (2000) Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization. Evolution 54:1218–1233

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Carneiro M, Esteves PJ, Farelo L, Alves PC (2012) Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations. Syst Biol 61:367–381

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi Y, Kang KS, Lee KY, Lee SW, Kim YY (2009) Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondrial and nuclear DNA markers. J Plant Res 122:153–160

    Article  CAS  PubMed  Google Scholar 

  • Müller K (2005) SeqState - primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinform 4:65–69

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • O’Connell LM, Ritland K (2004) Somatic mutations at microsatellite loci in western red cedar (Thuja plicata: Cupressaceae). J Hered 95:172–176

    Article  PubMed  Google Scholar 

  • Parchman TL, Benkman CW, Jenkins B, Buerkle CA (2011) Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution. Am J Bot 98:669–679

    Article  PubMed  Google Scholar 

  • Peng Y, Yin S, Wang J, Tian B, Ren G, Guo Q, Liu J (2012) Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture. Ann Forest Sci 69:409–416

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potter D, Freudenstein JV (2005) Character-based phylogenetic Linnaean classification: taxa should be both ranked and monophyletic. Taxon 54:1033–1035

    Article  Google Scholar 

  • Pritchard J, Wen W (2003) Documentation for STRUCTURE Software, version 3.2. http://pritch.bsd.uchicago.edu/structure.html

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond A (2004) Tracer–MCMC trace analysis tool. University of Oxford, Oxford

    Google Scholar 

  • Ray N, Adams JM (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Internet Archaeology 11. Available from: http://www.ncdc.noaa.gov/paleo/pubs/ray2001/ray_adam_2001.pdf

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Royer DL, Hickey LJ, Wing SL (2003) Ecological conservatism in the “living fossil” Ginkgo. Paleobiology 29:84–104

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong G, Zhang J, Fan S (1992) Distribution of Quaternary palynoflora in China. Marine Geol Quat Geol 12:45–56

    Google Scholar 

  • Tong GB, Chen Y, Wu XH, Li ZH, Yang ZJ, Wang SB, Cao JD (1999) Pleistocene environmental megaevolution and indicated by the sporopollen floras in China. J Geophys Res 5:11–21

    Google Scholar 

  • Tran TTT (2011) Spatial distribution and historical dynamics of threatened conifers of the Dalat Plateau. Master thesis. University of Missouri, Columbia

  • Traula H (1968) The phytogeographic evolution of the genus Ginkgo L. Bot Notiser 120:409–422

    Google Scholar 

  • Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Wachowiak W, Prus-Glowacki W (2008) Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann. Plant Syst Evol 271:29–40

    Article  Google Scholar 

  • Wang JP, Hsu KC, Chiang TY (2000) Mitochondrial DNA phylogeography of Acrossocheilus paradoxus (Cyprinidae) in Taiwan. Mol Ecol 9:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Pan YZ, Gong X, Chiang YC, Kuroda C (2011) Chloroplast DNA variation and phylogeography of Ligularia tongolensis (Asteraceae), a species endemic to the Hengduan Mountains region of China. J Syst Evol 49:108–119

    Article  Google Scholar 

  • Wang J, Abbott RJ, Peng YL, Du FK, Liu JQ (2012) Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variation. Heredity 107:362–370

    Article  Google Scholar 

  • Wang JF, Gong X, Chiang YC, Kuroda C (2013) Phylogenetic patterns and disjunct distribution in Ligularia hodgsonii Hook. (Asteraceae). J Biogeogr 40:1741–1754

    Article  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Penkrot TA (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51:69–91

    Article  PubMed  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu JX, Ferguson DK, Li CS, Wang YF (2008) Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Rev Palaeobot Palynol 48:36–59

    Article  Google Scholar 

  • Zhou QX (2001) Studies on systematics of the Taxaceae. Dissertation, Kunming Institute of Botany, Kunming, China

  • Zhou B, Li G, Yao M, Fang L (1994) An analysis on the periglacial geomorphy and paleogeographic environment during the Quaternary of the Mount Jiuhuashan. J Anhui Normal Univ Natur Sci 17:48–53

    Google Scholar 

  • Zhou YF, Abbott RJ, Jiang ZY, Du FK, Milne RI, Liu JQ (2010) Gene flow and species delimitation: a case study of two pine species with overlapping distributions in southeast China. Evolution 64:2342–2352

    CAS  PubMed  Google Scholar 

  • Zou J, Sun Y, Li L, Wang G, Yue W, Lu Z, Wang Q, Liu J (2013) Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Ann Bot 112:1829–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chao-Yi Deng, Guo-Sheng He, Yun-Fei Deng and Hua-Gu Ye for their help with material sampling. We also thank Joanna Schultz (Lewis-Clark State College, ID) and two reviewers for their helpful comments. This study was supported financially by National Basic Research Program of China (973 Program) (Grant No. 2014CB954100) National Natural Science Foundation of China (No. 30170070), and the National Science Council of Taiwan (NSC 96-2628-B-020 -001 -MY2 and NSC 102-2628-B-110 -001 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzen-Yuh Chiang or Yu-Chung Chiang.

Additional information

X.-J. Ge and K.-H. Hung contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, XJ., Hung, KH., Ko, YZ. et al. Genetic Divergence and Biogeographical Patterns in Amentotaxus argotaenia Species Complex. Plant Mol Biol Rep 33, 264–280 (2015). https://doi.org/10.1007/s11105-014-0742-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0742-0

Keywords

Navigation