Skip to main content
Log in

Transcriptome versus Genomic Microsatellite Markers: Highly Informative Multiplexes for Genotyping Abies alba Mill. and Congeneric Species

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The availability of high-resolution, cost-effective polymorphic genetic markers displaying Mendelian inheritance is a prerequisite for fine-scale population genetic analyses as well as informed conservation and sustainable management. Silver fir (Abies alba Mill.) is a widespread European species of economic and ecological importance for which genetic markers are needed but difficult to develop, as in most conifer species. In this work, we introduce two sets of new multiplexed transcriptome-derived expressed sequence tag microsatellites (EST-simple sequence repeats (SSRs)) which we compare to a set of multiplexed genomic microsatellites (gSSRs). For both marker types, transferability was tested in 17 congeneric taxa. A total of 16 new EST-SSRs and two new gSSRs were developed. The EST-SSR multiplexes produced easily scorable amplification patterns that allow rapid and cost-effective genotyping at low-error rates, and include loci that display very low null allele frequencies. Generally, EST-SSRs displayed lower polymorphism and frequency of null alleles, but higher genetic differentiation among populations than gSSRs. Preliminary tests revealed that the EST-SSR markers are highly transferable and polymorphic across Abies species. This study also confirmed that SSRs can be successfully developed using next-generation sequencing technology also in large genome species such as conifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59:823–832

    Article  Google Scholar 

  • Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I (2012) Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS ONE 7:e40699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chauchard S, Caicaillet C, Guibal F (2007) Pattern of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948

    Article  Google Scholar 

  • Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. For Ecol Manage 259:1406–1415

    Article  Google Scholar 

  • Cheddadi R, Birks HJB, Tarroso P, Liepelt S, Gömöry D, Dullinger S, Meier ES, Hülber K, Maiorano L, Laborde H (2013) Revisiting tree-migration rates: Abies alba (Mill.), a case study. Veg Hist Archaeobot. doi:10.1007/s00334-013-0404-4

    Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cremer E, Liepelt S, Sebastiani F, Buonamici A, Michalczyk IM, Ziegenhagen B, Vendramin GG (2006) Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol Ecol Notes 6:374–376

    Article  CAS  Google Scholar 

  • Cremer E, Ziegenhagen B, Schulerowitz K, Mengel C, Donges K, Bialozyt R, Hussendörfer E, Liepelt S (2012) Local seed dispersal in European silver fir (Abies alba Mill.): lessons learned from a seed trap experiment. Trees 26:987–996

    Article  Google Scholar 

  • Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27

    Article  CAS  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep. doi:10.1007/s11105-013-0586-z

    PubMed Central  PubMed  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481

    Article  CAS  Google Scholar 

  • Gillet E, Hattemer HH (1989) Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63:135–141

    Article  Google Scholar 

  • Gömöry D, Paule L, Krajmerová D, Romšáková I, Longauer R (2012) Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Syst Evol 298:703–712

    Article  Google Scholar 

  • Guehl JM, Aussenac G, Bouachrine J, Zimmermann R, Pennes JM, Ferhi A, Grieu P (1991) Sensitivity of leaf gas-exchange to atmospheric drought, soil drought, and water-use efficiency in some Mediterranean Abies species. Can J For Res 10:1507–1515

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Hansen OK, Vendramin GG, Sebastiani F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol Ecol Notes 5:784–787

    Article  CAS  Google Scholar 

  • Hansen OK, Nielsen UB, Kongevej H (2008) Crossing success in Abies nordmanniana following artificial pollination with a pollen mixture of A. nordmanniana and A. alba. Silvae Genet 57:70–75

    Google Scholar 

  • Jakobsson M, Edge MD, Rosenberg NA (2013) The relationship between F ST and the frequency of the most frequent allele. Genetics 193:515–528

    Article  PubMed Central  PubMed  Google Scholar 

  • Jamieson A, Taylor SCS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kim K, Ratcliffe S, French B, Liu L, Sappington T (2008) Utility of EST-derived SSRs as population genetic markers in a beetle. J Hered 99:112–124

    Article  CAS  PubMed  Google Scholar 

  • Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of Silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30

    Article  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I, Neale DB (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420

    Article  PubMed Central  PubMed  Google Scholar 

  • Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schüler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordács S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frydl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Piano EN, Oztürk H, Pandeva ID, Parnuta G, Pilipovič A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zarinda I (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27:373–384

    Article  PubMed  Google Scholar 

  • Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liepelt S, Cheddadi R, de Beaulieu JL, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.) - A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153:139–149

    Article  Google Scholar 

  • Linares J, Camarero JJ (2012) Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur J For Res 131:1001–1012

    Article  Google Scholar 

  • Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir Abies alba (Mill.) water stress in its south-western distribution limit. Clim Chang 79:289–313

    Article  Google Scholar 

  • Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob Ecol Biogeogr 22:302–317

    Article  Google Scholar 

  • Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé PJ, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644

    Article  CAS  PubMed  Google Scholar 

  • Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194

    Article  PubMed  Google Scholar 

  • Oddou-Muratorio S, Vendramin GG, Buiteveld J, Fady B (2009) Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci? Conserv Genet 10:1343–1347

    Article  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180

    Article  PubMed Central  PubMed  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research— an update. Bioinformatics 19:2537–2539

    Article  Google Scholar 

  • Pérez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276

    Article  PubMed  Google Scholar 

  • Petit RJ, Deguilloux MF, Chat J, Grivet D, Garnier-Géré P, Vendramin GG (2005) Removing the bias due to different numbers of repeats when comparing measures of diversity at microsatellite loci. Mol Ecol 14:885–890

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419

    Article  CAS  PubMed  Google Scholar 

  • Pinzauti F, Sebastiani F, Budde KB, Fady B, Gonzalez-Martinez SC, Vendramin GG (2012) Nuclear microsatellite for Pinus pinea (Pinaceae), a genetically depauperate tree and their transferability to P. halepensis. Am J Bot 99:362–365

    Article  Google Scholar 

  • Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piovani P, Leonardi S, Piotti A, Menozzi P (2010) Conservation genetics of small relic populations of Silver fir (Abies alba Mill.) in northern Apennines. Plant Biosyst 144:683–691

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roschanski AM, Fady B, Ziegenhagen B, Liepelt S (2013) Annotation and re-sequencing of genes from de novo transcriptome assembly of Abies alba (Pinaceae). Appl Plant Sci 1:1200179

    Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sagnard F, Barberot C, Fady B (2002) Structure of genetic diversity in Abies alba Mill. from south-western Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France. Forest Ecol Manage 157:175–189

    Article  Google Scholar 

  • Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Říčanová A, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for non-model organisms using 454 pyrosequencing. J Evolu Biol 26:600–611

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnol 18:233–234

    Article  CAS  Google Scholar 

  • Sebastiani F, Pinzauti F, Kujala ST, Gonzalez-Martinez SC, Vendramin GG (2012) Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conserv Genet Resour 4:231–234

    Article  Google Scholar 

  • Soto-Cerda BJ, Cloutier S (2013) Outlier loci and selection signatures of simple sequence repeats (SSRs) in flax (Linum usitatissimum L.). Plant Mol Biol Rep. doi:10.1007/s11105-013-0568-1

    PubMed Central  PubMed  Google Scholar 

  • Sullivan AR, Lind JF, McCleary TS, Romero-Severson J, Gailing O (2013) Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Mol Biol Rep 31:231–239

    Article  CAS  Google Scholar 

  • Tarazi R, Sebben AM, Mollinari M, Vencovsky R (2010) Mendelian inheritance, linkage and linkage disequilibrium in microsatellite loci of Copaifera langsdorffii Desf. Conserv Genet Resour 2:201–204

    Article  Google Scholar 

  • The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Article  PubMed Central  Google Scholar 

  • Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N, Sakurai T, Shinohara K, Tsumura Y (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126

    Article  Google Scholar 

  • Wagner S, Gerber S, Petit RJ (2012) Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol Ecol Resour 12:717–725

    Article  CAS  PubMed  Google Scholar 

  • Wolf H (2003) EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). International Plant Genetic Resources Institute. Rome, Italy

    Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  PubMed  Google Scholar 

  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by the Italian MIUR project “Biodiversitaly” (RBAP10A2T4) and by the ERA-Net BiodivERsA LinkTree project (EUI2008-03713). We thank Dr. Popescu Flaviu, Daniel Pitar, Ovidiu Iordan and Daniel Suciu (Forest Research and Management Institute, Romania) and Prof. Peter Zhelev (University of Forestry, Sofia, Bulgaria) for their help with the sampling in the Romanian Carpathians and in the Pirin Mountains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giuseppe Vendramin.

Additional information

Dragos Postolache and Cristina Leonarduzzi contributed to this study equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postolache, D., Leonarduzzi, C., Piotti, A. et al. Transcriptome versus Genomic Microsatellite Markers: Highly Informative Multiplexes for Genotyping Abies alba Mill. and Congeneric Species. Plant Mol Biol Rep 32, 750–760 (2014). https://doi.org/10.1007/s11105-013-0688-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0688-7

Keywords

Navigation