Skip to main content
Log in

Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present study aimed to provide a more precise understanding of the mechanism and specificity of the interaction between PGPR and host plants.

Methods

In the present study, the effects of interactions between a PGPR strain, Bacillus cereus AR156, and Arabidopsis thaliana wild type (Col-0) or its ABC transporter mutants on plant growth have been studied.

Results

B. cereus AR156 promoted the shoot growth of Col-0 and Atabcg30 but repressed the growth of Atabcc5. Bacterial volatiles and secretion promoted the shoot growth of Col-0 and Atabcg30 but had no effect on Atabcc5. We also found that root exudates of Col-0 induced the expression of B. cereus AR156 genes related to siderophore and chitinase production; while root exudates of Atabcc5 inhibited the expression level of those genes. Further analysis of root exudates revealed that amino acids, organic acids, and sugars were significantly less abundant in Atabcc5 when compared to Col-0.

Conclusions

Our findings highlight that both host plant and PGPR play active roles in the outcome of the plant-microbe interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acea MJ, Moore CR, Alexander M (1988) Survival and growth of bacteria introduced into soil. Soil Biol Biochem 20:509–515. doi:10.1016/0038-0717(88)90066-1

    Article  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi:10.1111/1751-7915.12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliasgharzad N, Neyshabouri M, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 61:S324–S328. doi:10.2478/s11756-006-0182-x

    Article  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. doi:10.1016/j.sjbs.2012.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Azcón R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast Interactions. Mol Microb Ecol Rhizosphere. doi:10.1002/9781118297674.ch93, John Wiley & Sons, Inc

    Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-Binding cassette transporter mutants. Plant Physiol 146:762–771. doi:10.1104/pp. 107.109587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017. doi:10.1104/pp. 109.147462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Chaparro JM, Zhang RF, Shen QR, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:10. doi:10.1074/jbc.M112.433300

    Article  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi:10.1104/pp. 103.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bertani G (1951) Studies on Lysogenesis I.: the mode of phage liberation by Lysogenic Escherichia coli. J. Bacteriol. 62:293–300

  • Brimecombe M, Leij F, Lynch J (2001) Nematode community structure as a sensitive indicator of microbial perturbations induced by a genetically modified Pseudomonas fluorescens strain. Biol Fertil Soils 34:270–275. doi:10.1007/s003740100412

    Article  CAS  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336. doi:10.1093/jxb/eri058

    Article  CAS  PubMed  Google Scholar 

  • Campbell RG, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8, e55731. doi:10.1371/journal.pone.0055731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430. doi:10.1111/j.1365-2958.2012.08109.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864. doi:10.1111/j.1462-2920.2012.02860.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Chet I (1990) Biological control of soil-borne plant pathogens with fungal antagonists in combination with soil treatments. In: Hornby D (ed) Biological control of soil-borne plant pathogens

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43. doi:10.1007/BF02825358

    Article  CAS  PubMed  Google Scholar 

  • Crowley D (2006) Microbial siderophores in the plant rhizosphere. In: Barton L, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands

    Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. doi:10.1128/MMBR.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201. doi:10.1016/j.aoas.2013.07.007

    Google Scholar 

  • de Werra P, Huser A, Tabacchi R, Keel C, Maurhofer M (2011) Plant- and microbe-derived compounds affect the expression of genes encoding antifungal compounds in a pseudomonad with biocontrol activity. Appl Environ Microbiol 77:2807–2812. doi:10.1128/aem.01760-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244. doi:10.3109/10408411003766806

    Article  PubMed  Google Scholar 

  • Dutta S, Rani TS, Podile AR (2013) Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS ONE 8, e78369. doi:10.1371/journal.pone.0078369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan TWM, Lane AN, Pedler J, Crowley D, Higashi RM (1997) Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal Biochem 251:57–68. doi:10.1006/abio.1997.2235

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo M, Seldin L, Araujo F, Mariano R (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg

    Google Scholar 

  • Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández A, Briat J-F (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167. doi:10.1111/nph.12471

    Article  CAS  PubMed  Google Scholar 

  • Frans AAMDL, James ML, Melissa JB (2007) Rhizodeposition and microbial populations. The Rhizosphere. CRC Press

  • Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656. doi:10.1016/j.soilbio.2010.01.005

    Article  CAS  Google Scholar 

  • Frelet-Barrand A, Kolukisaoglu HU, Plaza S, Ruffer M, Azevedo L, Hortensteiner S, Marinova K, Weder B, Schulz B, Klein M (2008) Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49:557–569. doi:10.1093/pcp/pcn034

    Article  CAS  PubMed  Google Scholar 

  • Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Muller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20:1875–1887. doi:10.1093/emboj/20.8.1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15. doi:10.6064/2012/963401

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284. doi:10.1002/(SICI)1097-0231(19990228)13:4<279::AID-RCM478>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184

    CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2010) Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci 173:747–756. doi:10.1002/jpln.200900286

    Article  CAS  Google Scholar 

  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310. doi:10.1002/ps.3301

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Zhou DM, Guo JH, Manter DK, Reardon KF, Vivanco JM (2015) Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. J Appl Microbiol 118:672–684. doi:10.1111/jam.12720

    Article  CAS  PubMed  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbes Interact 20:619–626. doi:10.1094/mpmi-20-6-0619

    Article  CAS  Google Scholar 

  • Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-Binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol 131:1169–1177. doi:10.1104/pp. 102.014720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270. doi:10.1016/j.procbio.2004.05.010

    Article  CAS  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360. doi:10.1073/pnas.0909222107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20. doi:10.1016/j.scienta.2007.04.013

    Article  CAS  Google Scholar 

  • Keshav Prasad Shukla SS, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi:10.1046/j.1365-2672.2003.02161.x

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Chen F, Wang X, Rajapakse NC (2005) Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 53:3696–3701. doi:10.1021/jf0480804

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Station de pathologic Vegetal et Phytobacteriologic, Agners, France

  • Kloepper J, Leong J, Teintze M, Schroth M (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320. doi:10.1007/BF02602840

    Article  CAS  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733. doi:10.1111/j.1462-2920.2005.00841.x

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344. doi:10.1038/nature10873

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2011) Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg

    Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219. doi:10.1016/0167-7799(89)90107-8

    Article  Google Scholar 

  • Lee YS, Kim YH, Kim SB (2005) Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortSci 40:1333–1335

    CAS  Google Scholar 

  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:359–367. doi:10.1139/w01-009

    Article  CAS  PubMed  Google Scholar 

  • Loon LC, Bakker PAHM (2006) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands

    Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310. doi:10.1007/s00425-006-0349-2

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick B (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Srivastava S (2006) Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indoleacetic acid over-expression. Can J Microbiol 52:1078–1084. doi:10.1139/w06-071

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80. doi:10.1016/j.ejsobi.2008.05.006

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319. doi:10.4067/S0718-95162010000100006

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. doi:10.1016/j.plantsci.2003.10.025

    Article  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.1128/mmbr.00012-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nicholas CU (2007) Types, amounts, and possible functions of compounds released into the Rhizosphere by soil-grown plants. The Rhizosphere. CRC Press.

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542. doi:10.1094/MPMI-09-10-0213

    Article  CAS  PubMed  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2,4-Diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881. doi:10.1094/phyto.2001.91.9.873

    Article  CAS  PubMed  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43. doi:10.1016/j.scienta.2006.09.002

    Article  CAS  Google Scholar 

  • Orr CH, James A, Leifert C, Cooper JM, Cummings SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77:911–919. doi:10.1128/aem.01250-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752. doi:10.1007/s13593-014-0233-6

    Article  Google Scholar 

  • Peterson SB, Dunn AK, Klimowicz AK, Handelsman J (2006) Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the cytophaga-flavobacterium group. Appl Environ Microbiol 72:5421–5427. doi:10.1128/aem.02928-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38. doi:10.1104/pp. 83.1.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dye F, Moenne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219. doi:10.1111/j.1574-6941.2008.00474.x

    Article  CAS  PubMed  Google Scholar 

  • Přikryl Z, Vančura V (1980) Root exudates of plants. Plant Soil 57:69–83. doi:10.1007/bf02139643

    Article  Google Scholar 

  • Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res 117:169–176. doi:10.1016/j.fcr.2010.03.001

    Article  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375. doi:10.1146/annurev.arplant.57.032905.105406

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996. doi:10.1104/pp. 111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7:1839–1846. doi:10.1111/j.1462-2920.2005.00848.x

    Article  CAS  PubMed  Google Scholar 

  • Rovira A (1969) Plant root exudates. Bot Rev 35:35–57. doi:10.1007/BF02859887

    Article  CAS  Google Scholar 

  • Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, Łangowski Ł, Nejedlá E, Fujita H, Itoh H, Syōno K, Hejátko J, Gray WM, Martinoia E, Geisler M, Bartel B, Murphy AS, Friml J (2010) Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc Natl Acad Sci U S A 107:10749–10753. doi:10.1073/pnas.1005878107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan AD, Kinkel LL, Schottel JL (2004) Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Sci Tech 14:301–311. doi:10.1080/09583150410001665187

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayyed RZ, Gangurde NS, Patel PR, Josh SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol 9:302–307

    CAS  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Papa M, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. doi:10.1007/s00253-009-2116-3

    Article  CAS  PubMed  Google Scholar 

  • Sharp R (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:36. doi:10.3390/agronomy3040757

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. J Phytopathol 151:231–238. doi:10.1046/j.1439-0434.2003.00716.x

    Article  Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810. doi:10.1128/aem.71.4.1803-1810.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell Online 18:731–746. doi:10.1105/tpc.105.038372

    Article  CAS  Google Scholar 

  • Stenfors Arnesen LP, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606. doi:10.1111/j.1574-6976.2008.00112.x

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Bartel B (2009) The Arabidopsis pleiotropic drug resistance8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007. doi:10.1105/tpc.109.065821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in Legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008. doi:10.1104/pp. 107.096727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7, e52565. doi:10.1371/journal.pone.0052565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LH, Xue QY, Wei BQ, Wang YM, Li SM, Chen LF, Guo JH (2010) Screening of antagonistic bacterial strains against Meloidogyne incognita using protease activity. Biocontrol Sci Tech 20:739–750. doi:10.1080/09583151003714109

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407. doi:10.1146/annurev.py.26.090188.002115

    Article  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307. doi:10.1016/j.pbi.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745. doi:10.1016/j.phytochem.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  • Zakharova EA, Iosipenko AD, Ignatov VV (2000) Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol Res 155:209–214. doi:10.1016/s0944-5013(00)80034-8

    Article  CAS  PubMed  Google Scholar 

  • Zhou DM, Wang KP, Liu HX, Gu C, Guo JH (2014) Field evaluation of different application methods of the mixture of Bacillus cereus strain AR156 and Bacillus subtilis strain SM21 on pepper growth and disease resistance. Biocontrol Sci Tech 24:1451–1468. doi:10.1080/09583157.2014.945899

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of Professors Vivanco’s and Guo’s groups for technical assistance and helpful discussions. We especially thank Prof. Congfeng Song (Nanjing Agricultural University, China) and Dr. Azeddine Driouich (Universite’ de Rouen, France) for helpful suggestions. This work was supported by National Natural Science Foundation of China (No.31471812 and No.31171809) to JG, China Scholarship Council (No. 201206850028) to DZ, and by Colorado State University Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Guo.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used for amplification of Bacillus cereus AR156 bioactivity genes. (PDF 442 kb)

Table S2

Root exudate data of Col-0 and Atabbc5 analyzed via GC-MS. Data is normalized by the internal standard Ribitol within sample. Field name is as follows [molecular weight (retention time followed by compound identification)]. (XLSX 82 kb)

Fig. S1

Effect of B. cereus AR156 on the shoot growth of 35 d-old Arabidopsis Col-0 and different ABC transporter mutants. (A) Shoot fresh weight was determined at 21 days after inoculation of B. cereus AR156. Asterisks indicate statistically significant differences between the treatments of a given mutants with or without AR156 (t-test; p<0.05). (B)The image represents plants at 21 days after inoculation. (GIF 74 kb)

High resulotion Image (TIF 6140 kb)

Fig. S2

AR156 is not pathogenic to Atabcc5 and Col-0. The seedlings at 18 d-old were injected with Bacillus AR156 at a concentration of 2×108 CFU/mL on the leaf and incubated for 24 h. The control was inoculated with water. Each treatment contained 6 plants. (GIF 200 kb)

High resulotion Image (TIF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Huang, XF., Chaparro, J.M. et al. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401, 259–272 (2016). https://doi.org/10.1007/s11104-015-2743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2743-7

Keywords

Navigation