Skip to main content
Log in

Peatland vascular plant functional types affect dissolved organic matter chemistry

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Northern peatlands are large repositories of carbon. Peatland vascular plant community composition has been functionally associated to a set of biogeochemical processes such as carbon cycling. Yet, we do not fully understand to what extent vascular plant functional types (PFTs) affect the quality of dissolved organic matter, and if there is any feedback on soil microbial activity.

Methods

Using a longer–term plant removal experiment in a boreo–nemoral peatland in Southern Sweden, we relate the dominance of different vascular plant functional types (i.e. ericoids and graminoids) to the chemistry of the dissolved organic matter (DOM) and microbial enzymatic activities (fluorescein diacetate hydrolysis, FDA).

Results

Our results show that PFTs modifies the composition of DOM moieties, with a decrease of low molecular weight organic compounds after vascular plant removal. The decrease of enzymatic activity by up to 68 % in the plant removal plots suggests a reduction in DOM mineralization in the absence of vascular plants.

Conclusions

Our results show that plant–derived low molecular organic compounds enhance peatland microbial activity, and suggest that an increase of vascular plant cover in response to climate change can potentially destabilize the OM in peatlands, leading to increased carbon losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht R, Ziarelli F, Alarcón Gutiérrez E, et al. (2008) 13C solid-state NMR assessment of decomposition pattern during co-composting of sewage sludge and green wastes. Eur J Soil Sci 59:445–452

    Article  Google Scholar 

  • Albrecht R, Verrecchia E, Pfeifer HR (2015) The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations. Talanta 134:453–459

    Article  CAS  PubMed  Google Scholar 

  • Biasi C, Rusalimova O, Meyer H, et al. (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of Arctic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Biester H, Knorr KH, Schellekens J, et al. (2014) Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11:2691–2707

    Article  CAS  Google Scholar 

  • Bird JA, Herman DJ, Firestone MK (2011) Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol Biochem 43:718–725

    Article  CAS  Google Scholar 

  • Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Bloor JMG, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol, Evol Systemetics 14:193–204

    Article  Google Scholar 

  • Bragazza L, Parisod J, Buttler A, Bardgett RD (2013) Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat Clim Chang 3:273–277

    Article  CAS  Google Scholar 

  • Bragazza L, Bardgett RD, Mitchell EAD, Buttler A (2015) Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol 205:1175–1182

    Article  PubMed  Google Scholar 

  • Breeuwer A, Robroek BJM, Limpens J, et al. (2009) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339

    Article  Google Scholar 

  • Breeuwer A, Heijmans MMPD, Robroek BJM, Berendse F (2010) Field simulation of global change: transplanting northern bog mesocosms southward. Ecosystems 13:712–726

    Article  CAS  Google Scholar 

  • Bret-Harte MS, García EA, Sacré VM, et al. (2004) Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. J Ecol 92:635–647

    Article  Google Scholar 

  • Bro R, Kiers HAL (2003) A new efficient method for determining the number of components in PARAFAC models. J Chemom 17:274–286

    Article  CAS  Google Scholar 

  • Broder T, Blodau C, Biester H, Knorr KH (2012) Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9:1479–1491

    Article  CAS  Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Chang Biol 13:1168–1186

    Article  Google Scholar 

  • Buttler A, Robroek BJM, Laggoun-Défarge F, et al. (2015) Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J Veg Sci 26:964–974

    Article  Google Scholar 

  • Chanton JP, Glaser PH, Chasar LS, et al. (2008) Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Glob Biogeochem Cycles 22:GB4022

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Dise NB (2009) Peatland response to global change. Science 326:810–811

    Article  CAS  PubMed  Google Scholar 

  • Dorrepaal E, Toet S, RSP VL, et al. (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619

    Article  CAS  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, et al. (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175

    Article  PubMed  Google Scholar 

  • Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900

    Article  CAS  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149

    Article  CAS  PubMed  Google Scholar 

  • Green, Stott, Diack (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701

    Article  CAS  Google Scholar 

  • Greenup AL, Bradford MA, McNamara NP, et al. (2000) The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 227:265–272

    Article  CAS  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704

    Article  Google Scholar 

  • He X, Xi B, Wei Z, et al. (2011) Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 82:541–548

    Article  CAS  PubMed  Google Scholar 

  • Hodgkins SB, Tfaily MM, McCalley CK, et al. (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. PNAS 111:5819–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham ER, Klein DA (1982) Relationship between fluorescein diacetate-stained hyphae and oxygen utilization, glucose utilization, and biomass of submerged fungal batch cultures. Appl Environ Microbiol 44:363–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isbell F, Calcagno V, Hector A, et al. (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202

    Article  CAS  PubMed  Google Scholar 

  • Jassey VEJ, Chiapusio G, Gilbert D, et al. (2011a) Experimental climate effect on seasonal variability of polyphenol/phenoloxidase interplay along a narrow fen-bog ecological gradient in Sphagnum fallax. Glob Chang Biol 17:2945–2957

    Article  Google Scholar 

  • Jassey VEJ, Chiapusio G, Mitchell EAD, et al. (2011b) Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb Ecol 61:374–385

    Article  PubMed  Google Scholar 

  • Kalbitz K (2003) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142

    Article  CAS  Google Scholar 

  • Kothawala DN, Wachenfeldt von E, Koehler B, Tranvik LJ (2012) Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci Total Environ 433:238–246

    Article  CAS  PubMed  Google Scholar 

  • Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2014) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology 95:123–131

    Article  PubMed  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Luciani X, Redon R, Mounier S (2013) How to correct inner filter effects altering 3D fluorescence spectra by using a mirrored cell. Chemom Intell Lab Syst 126:91–99

    Article  CAS  Google Scholar 

  • Malmer N, Johansson T, Olsrud M, et al. (2005) Vegetation, climatic changes and net carbon sequestration in a north-Scandinavian subarctic mire over 30 years. Glob Chang Biol 1:1895–1909

    Google Scholar 

  • Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5:6557–6511

    Article  CAS  Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Glob Chang Biol 8:872–884

    Article  Google Scholar 

  • Niemeyer J, Chen Y, Bollag JM (1992) Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci Soc Am J 56:135–140

    Article  CAS  Google Scholar 

  • Pengerud A, Cécillon L, Johnsen LK, et al. (2013) Permafrost distribution drives soil organic matter stability in a subarctic palsa peatland. Ecosystems 16:934–947

    Article  CAS  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

  • Robroek BJM, Schouten MGC, Limpens J, et al. (2009) Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob Chang Biol 15:680–691

    Article  Google Scholar 

  • Robroek BJM, Wubs E, Marti M, et al. (2014) Microclimatological consequences for plant and microbial composition in sphagnum-dominated peatlands. Boreal Environ Res 19:195–208

    Google Scholar 

  • Robroek BJM, Jassey VEJ, Kox MAR, et al. (2015) Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. J Ecol 103:925–934

    Article  CAS  Google Scholar 

  • Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC Press LLC, Boca Raton

    Google Scholar 

  • Tfaily MM, Hamdan R, Corbett JE, et al. (2013) Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques. Geochim Cosmochim Acta 112:116–129

    Article  CAS  Google Scholar 

  • Tfaily MM, Corbett JE, Wilson R, et al. (2015) Utilization of PARAFAC-modeled excitation-emission matrix (EEM) fluorescence spectroscopy to identify biogeochemical processing of dissolved organic matter in a northern peatland. Photochem Photobiol 91:684–695

    Article  CAS  PubMed  Google Scholar 

  • Walker TN, Ward SE, Ostle NJ, Bardgett RD (2015) Contrasting growth responses of dominant peatland plants to warming and vegetation composition. Oecologia 178:141–151

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462

    Article  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, et al. (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–1293

    Article  PubMed  Google Scholar 

  • Ward SE, Orwin KH, Ostle NJ, et al. (2015) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology 96:113–123

    Article  PubMed  Google Scholar 

  • Wiedermann MM, Gunnarsson U, Nilsson MB, et al. (2008) Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos 118:449–456

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Länsstyrelsen i Jönköpings län and the staff of the Store Mosse National Park, particularly Arne Andersson, Peter Mattiasson and Martha Wageus, for granting access to the peatland (permission 521-895-2011) and make use of the infrastructure of the park. Roy van Grunsven and two anonymous reviewers provided valuable comments on the scientific content. This work has been financed partially by the Swiss National Science Foundation (SPHAGNOL project; grant number 315280-14807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn J. M. Robroek.

Additional information

Responsible Editor: Elizabeth M. Baggs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robroek, B.J.M., Albrecht, R.J.H., Hamard, S. et al. Peatland vascular plant functional types affect dissolved organic matter chemistry. Plant Soil 407, 135–143 (2016). https://doi.org/10.1007/s11104-015-2710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2710-3

Keywords

Navigation