Skip to main content
Log in

Permafrost Distribution Drives Soil Organic Matter Stability in a Subarctic Palsa Peatland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Palsa peatlands, permafrost-affected peatlands characteristic of the outer margin of the discontinuous permafrost zone, form unique ecosystems in northern-boreal and arctic regions, but are now degrading throughout their distributional range due to climate warming. Permafrost thaw and the degradation of palsa mounds are likely to affect the biogeochemical stability of soil organic matter (that is, SOM resistance to microbial decomposition), which may change the net C source/sink character of palsa peatland ecosystems. In this study, we have assessed both biological and chemical proxies for SOM stability, and we have investigated SOM bulk chemistry with mid-infrared spectroscopy, in surface peat of three distinct peatland features in a palsa peatland in northern Norway. Our results show that the stability of SOM in surface peat as determined by both biological and chemical proxies is consistently higher in the permafrost-associated palsa mounds than in the surrounding internal lawns and bog hummocks. Our results also suggest that differences in SOM bulk chemistry is a main factor explaining the present SOM stability in surface peat of palsa peatlands, with selective preservation of recalcitrant and highly oxidized SOM components in the active layer of palsa mounds during intense aerobic decomposition over time, whereas SOM in the wetter areas of the peatland remains stabilized mainly by anaerobic conditions. The continued degradation of palsa mounds and the expansion of wetter peat areas are likely to modify the bulk SOM chemistry of palsa peatlands, but the effect on the future net C source/sink character of palsa peatlands will largely depend on moisture conditions and oxygen availability in peat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alewell C, Giesler R, Klaminder J, Leifeld J, Rollog M. 2011. Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8:1769–78.

    Article  CAS  Google Scholar 

  • Artz RRE, Chapman SJ, Robertson AHJ, Potts JM, Laggoun-Defarge F, Gogo S, Comont L, Disnar JR, Francez AJ. 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol Biochem 40:515–27.

    Article  CAS  Google Scholar 

  • Aune B. 1993. Temperature normals for the period 1961–1990. Rep. 02/93. The Norwegian Meteorological Institute, Oslo, Norway.

  • Backstrand K, Crill PM, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Bastviken D. 2010. Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7:95–108.

    Article  Google Scholar 

  • Backstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D. 2008. Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. J Geophys Res Biogeosci 113:G03026. doi:10.1029/2008JG000703.

    Article  Google Scholar 

  • Baes AU, Bloom PR. 1989. Diffuse reflectance and transmission fourier-transform infrared (DRIFT) spectroscopy of humic and fulvic-acids. Soil Sci Soc Am J 53:695–700.

    Article  CAS  Google Scholar 

  • Beleites C, Sergo V. 2011. `hyperSpec: a package to handle hyperspectral data sets in R’, in preparation, R package version 0.98-20110927. http://hyperspec.r-forge.r-project.org.

  • Billings WD, Luken JO, Mortensen DA, Peterson KM. 1982. Arctic tundra: a source or sink for atmospheric carbon-dioxide in a changing environment. Oecologia 53:7–11.

    Article  Google Scholar 

  • Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, van Dael M, Wessels HJCT, van den Heuvel LP, Eilers PHC, Buydens LMC, Wehrens R. 2010. Improved parametric time warping for proteomics. Chemometr Intell Lab Syst 104:65–74.

    Article  CAS  Google Scholar 

  • Bornemann L, Welp G, Amelung W. 2010. Particulate organic matter at the field scale: rapid acquisition using mid-infrared spectroscopy. Soil Sci Soc Am J 74:1147–56.

    Article  CAS  Google Scholar 

  • Bosiö J, Johansson M, Callaghan T, Johansen B, Christensen T. 2012. Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment. Clim Chang 115:379–98. doi:10.1007/s10584-012-0445-1.

    Article  Google Scholar 

  • Brady NC, Weil RR. 2002. The nature and properties of soils. New Jersey, USA: Pearson Education Inc. 960 p

    Google Scholar 

  • Camill P. 2005. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Chang 68:135–52.

    Article  CAS  Google Scholar 

  • Capriel P, Beck T, Borchert H, Gronholz J, Zachmann G. 1995. Hydrophobicity of the organic-matter in arable soils. Soil Biol Biochem 27:1453–8.

    Article  CAS  Google Scholar 

  • Cécillon L, Certini G, Lange H, Forte C, Strand LT. 2012. Spectral fingerprinting of soil organic matter composition. Org Geochem 46:127–36.

    Article  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J. 2004. The ade4 package I: one-table methods. R News 4:5–10.

    Google Scholar 

  • Christensen TR, Jackowicz-Korczynski M, Aurela M, Crill P, Heliasz M, Mastepanov M, Friborg T. 2012. Monitoring the multi-year carbon balance of a subarctic palsa mire with micrometeorological techniques. AMBIO 41:207–17.

    Article  PubMed  CAS  Google Scholar 

  • Dick DP, Leite SB, Dalmolin RSD, Almeida HC, Knicker H. 2011. Pinus afforestation in South Brazilian highlands: soil chemical attributes and organic matter composition. Sci Agricola 68:175–81.

    Article  CAS  Google Scholar 

  • Fronzek S, Luoto M, Carter TR. 2006. Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12.

    Article  Google Scholar 

  • Førland EJ. 1993. Precipitation normals for the period 1961–1990. Rep. 39/93. The Norwegian Meteorological Institute, Oslo.

  • Ghani A, Dexter M, Perrott KW. 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–43.

    Article  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands—role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1:182–95.

    Article  Google Scholar 

  • Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res: Biogeosci 116: G00K06. doi:10.1029/2010JG001507.

  • Guo Y, Bustin RM. 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. Intl J Coal Geol 37:29–53.

    Article  CAS  Google Scholar 

  • Hanssen-Bauer I, Drange H, Førland EJ, Roald LA, Børsheim KY, Hisdal H, Lawrence D, Nesje A, Sandven S, Sorteberg A, Sundby S, Vasskog K, Åslandsvik B. 2009. Climate in Norway 2100. Norwegian Centre for Climate (Norsk klimasenter), Oslo, Norway. 184 p.

  • Hofgaard A. 2003. Effects of climate change on the distribution and development of palsa peatlands: background and suggestions for a national monitoring project. Norway: Norwegian Institute for Nature Research (NINA), Trondheim. 31 p

    Google Scholar 

  • Ibarra JV, Munoz E, Moliner R. 1996. FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24:725–35.

    Article  CAS  Google Scholar 

  • Jackowicz-Korczynski M, Christensen TR, Backstrand K, Crill P, Friborg T, Mastepanov M, Strom L. 2010. Annual cycle of methane emission from a subarctic peatland. J Geophys Res: Biogeosci 115:G02009. doi:10.1029/2008JG000913.

    Article  Google Scholar 

  • Johansson T, Malmer N, Crill PM, Friborg T, Akerman JH, Mastepanov M, Christensen TR. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Chang Biol 12:2352–69.

    Article  Google Scholar 

  • Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Luetzow M. 2008. An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13.

    Article  Google Scholar 

  • Leavitt SW, Follett RF, Paul EA. 1996. Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis. Radiocarbon 38:231–9.

    CAS  Google Scholar 

  • Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP. 2012. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob Chang Biol 18:515–27.

    Article  Google Scholar 

  • Leifeld J, Steffens M, Galego-Sala A. 2012. Sensitivity of peatland carbon loss to organic matter quality. Geophys Res Lett 39:L14704. doi:10.1029/2012GL051856.

    Article  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo LD, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–55.

    Article  Google Scholar 

  • Moen A. 1999. Atlas of Norway: vegetation. Norwegian mapping authorities, Hønefoss, Norway. 200 p. ISBN 82-7945-000-9.

  • Moore TR, Dalva M. 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–64.

    Article  CAS  Google Scholar 

  • Nguyen TT, Janik LJ, Raupach M. 1991. Diffuse reflectance infrared fourier-transform (DRIFT) spectroscopy in soil studies. Aust J Soil Res 29:49–67.

    Article  CAS  Google Scholar 

  • Nykanen H, Heikkinen JEP, Pirinen L, Tiilikainen K, Martikainen PJ. 2003. Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Glob Biogeochem Cycles 17:1018. doi:10.1029/2002GB001861.

    Article  Google Scholar 

  • Olefeldt D, Roulet NT, Bergeron O, Crill P, Backstrand K, Christensen TR. 2012. Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophys Res Lett 39:L03501. doi:10.1029/2011GL050355.

    Article  Google Scholar 

  • Paul EA, Morris SJ, Conant RT, Plante AF. 2006. Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Sci Soc Am J 70:1023–35.

    Article  CAS  Google Scholar 

  • Plante AF, Fernandez JM, Haddix ML, Steinweg JM, Conant RT. 2011. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43:1051–8.

    Article  CAS  Google Scholar 

  • R Development Core Team 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Rennert T, Eusterhues K, Pfanz H, Totsche KU. 2011. Influence of geogenic CO(2) on mineral and organic soil constituents on a mofette site in the NW Czech Republic. Eur J Soil Sci 62:572–80.

    Article  CAS  Google Scholar 

  • Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen PJ. 2009. Large N2O emissions from cryoturbated peat soil in tundra. Nat Geosci 2:189–92.

    Article  CAS  Google Scholar 

  • Safarik I, Santruckova H. 1992. Direct determination of total soil carbohydrate content. Plant Soil 143:109–14.

    Article  CAS  Google Scholar 

  • Scanlon D, Moore T. 2000. Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–60.

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    Article  PubMed  CAS  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–14.

    Article  Google Scholar 

  • Sefick Jr. S. 2009. Stream Metabolism-A package for calculating single station metabolism from diurnal Oxygen curves. R package version 0.03-3.

  • Seppala M. 1986. The origin of palsas. Geogr Ann Ser A 68(3):141–7.

    Article  Google Scholar 

  • Seppala M. 2011. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat Res 75:366–70.

    Article  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB. 2006. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–53.

    Article  CAS  Google Scholar 

  • Smith BC. 1999. Infrared spectral interpretation. Boca Ration, FL: CRC Press. 288 p

    Google Scholar 

  • Strack M, Waddington JM, Lucchese MC, Cagampan JP. 2009. Moisture controls on CO2 exchange in a Sphagnum-dominated peatland: results from an extreme drought field experiment. Ecohydrology 2:454–61.

    Article  CAS  Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE. 2009. Storage and turnover of organic matter in soil. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken. pp. 219–272.

  • Turetsky MR. 2004. Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–50.

    Article  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH. 2002. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–12.

    Article  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD. 2007. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob Chang Biol 13:1922–34.

    Article  Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in Northern Wetlands. Ecol Appl 5:151–63.

    Article  Google Scholar 

  • von Lutzow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–45.

    Article  Google Scholar 

  • Zuidhoff FS, Kolstrup E. 2000. Changes in palsa distribution in relation to climate change in Laivadalen, Northern Sweden, especially 1960–1997. Permafrost Periglac Proc 11:55–69.

    Article  Google Scholar 

Download references

Acknowledgments

Karl Andreas Jensen and Peter Dörsch are highly acknowledged for helpful discussions and advice related to the C mineralization experiments. The study was funded by The Norwegian Soil and Peat Society, the research project “Organic matter in permafrost: molecular composition and associated response to increasing temperature (PERMASOM)” (Norwegian Research Council (NFR) Project No. 184754/S30), and the Norwegian University of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelene Pengerud.

Additional information

Author Contribution

AP, LKJ, DPR and LTS: designed the study. AP, LKJ and LTS: performed research. AP and LC: analysed data. AP and LC: wrote the paper. All authors discussed the results and the structure of the paper, commented and revised the manuscript text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pengerud, A., Cécillon, L., Johnsen, L.K. et al. Permafrost Distribution Drives Soil Organic Matter Stability in a Subarctic Palsa Peatland. Ecosystems 16, 934–947 (2013). https://doi.org/10.1007/s10021-013-9652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9652-5

Keywords

Navigation