Skip to main content
Log in

Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum

  • Published:
Photosynthetica

Abstract

Salicylic acid (SA) and polyamines (PA) are widely used to overcome various abiotic stresses including salt (NaCl) stress in plants. In the present investigation, co-application efficacies of SA and PA on the salt stress (200 mM NaCl) were evaluated in Lycopersicon esculentum. After transplantation, at 10-d stage, seedlings were exposed to NaCl through soil and then allowed to grow till 30-d stage. At 31-d stage of growth, plants were sprayed with double distilled water (control) or spermidine (1.0 mM) and/or SA (10–5 M). The salt stress significantly reduced the growth, gas-exchange parameters, but increased antioxidant enzymes and proline content in the leaves. Moreover, the loss caused by salt stress was successfully restored by the following treatment of spermidine and SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

CA:

carbonic anhydrase

CAT:

catalase

Chl:

chlorophyll

DAS:

days after sowing

DDW:

double distilled water

DM:

dry mass

FM:

fresh mass

g s :

stomatal conductance

LSD:

least significant difference

NR:

nitrate reductase

PA:

polyamines

POX:

peroxidase

P N :

net photosynthetic rate

ROS:

reactive oxygen species

SA:

salicylic acid

Spd:

spermidine

SOD:

superoxide dismutase

SPAD:

soil and plant analysis development

References

  • Agarwal S., Sairam F.K., Srivastava G.C. et al.: Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings.–Plant Sci. 169: 559–570, 2005.

    Article  CAS  Google Scholar 

  • Ahmad P., Azooz M.M., Prasad M.N.V.: Ecophysiology and Responses of Plants under Salt Stress. Pp. 149–168. Springer Science & Business Media, New York 2012b.

    Google Scholar 

  • Ahmad P., Hakeem K.U.R., Kumar A. et al.: Salt induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.).–Afr. J. Biotechnol. 11: 2694–2703, 2012a.

    CAS  Google Scholar 

  • Ahmad P., Jaleel C.A., Azooz M.M. et al.: Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants.–Bot. Res. Intern. 2: 11–20, 2009.

    CAS  Google Scholar 

  • Alarcon J.J., Sanchez-Blanco M.J., Bolarin M.C. et al.: Water relation and osmotic adjustment in Lycopersicum esculentum and L. pinnelli during short-term of salt exposure and recovery.–Physiol. Plantarum 89: 441–447, 1993.

    Article  CAS  Google Scholar 

  • Al-Hakimi A.M.A., Hamada A.M.: Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate.–Biol. Plantarum 44: 253–261, 2001.

    Article  Google Scholar 

  • Ali Q., Athar H.R., Ashraf M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide.–Plant Growth Regul. 56: 107–116, 2008.

    Article  CAS  Google Scholar 

  • Mohanty P., Saradhi P.P.: Effect of sodium chloride on primary photochemical activities in cotyledonary leaves of Brassica juncea.–Biochem. Physiol. 188: 1–12, 1992.

    Google Scholar 

  • Amor N.B., Jiménez A., Megdiche W. et al.: Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima.–Physiol. Plantarum 126: 446–457, 2006.

    Article  Google Scholar 

  • Amri E., Shahsavar A.: Response of lime seedlings (Citrus aurantifolia L.) to exogenous spermidine treatments under drought stress.–Aust. J. Basic Appl. Sci. 4: 4483–4489, 2010.

    Google Scholar 

  • Arfan M., Athar H.R., Ashraf M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?–J. Plant Physiol. 164: 685–694, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M., Akram N.A., Arteca R.N. et al.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance.–Crit. Rev. Plant Sci. 29: 162–190, 2010.

    Article  CAS  Google Scholar 

  • Ashraf M., Athar H.R., Harris P.J.C. et al.: Some prospective strategies for improving crop salt tolerance.–Adv. Agron. 97: 45–110, 2008.

    Article  CAS  Google Scholar 

  • Athwal G.S., Huber S.C.: Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase.–Plant J. 29: 119–129, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bais H.P., Ravishankar G.A.: Role of polyamines in the ontogeny of plants and their biotechnological applications.–Plant Cell Tiss. Org. 69: 1–34, 2002.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldeen R.P., Teare I.D.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Beauchamp C.O., Fridovich I.: Superoxide dismutase: improved assays and assays applicable to acrylamide gels.–Anal. Biochem. 44: 276–287, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Belkheiri O., Mulas M.: The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species.–Environ. Exp. Bot. 86: 17–28, 2013.

    Article  CAS  Google Scholar 

  • Benavides M.P., Aizencang G., Tomaro M.L.: Polyamines in Helianthus annuus L. during germination under salt stress.–J. Plant Growth Regul. 16: 205–211, 1997.

    Article  CAS  Google Scholar 

  • Besford R.T., Richardson C.M., Campos J.L. et al.: Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves.–Planta 189: 201–206, 1993.

    Article  CAS  Google Scholar 

  • Bethkey P.C., Drew M.C.: Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity.–Plant Physiol. 99: 219–226, 1992.

    Article  Google Scholar 

  • Bouchereau A., Azis A., Larher F. et al.: Polyamines and environmental challenges: recent development.–Plant Sci. 140: 103–125, 1999.

    Article  CAS  Google Scholar 

  • Campbell H.W.: Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology.–Annu. Rev. Plant Phys. 50: 277–303, 1999.

    Article  CAS  Google Scholar 

  • Carswell G.K., Johnson C.M, Shillito R.D. et al.: O-acetylsalicylic acid promotes colony formation from protoplasts of an elite maize inbred.–Plant Cell Rep. 8: 282–284, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Chance B., Maehly A.C.: Assay of catalase and peroxidases.–Method. Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Chandra A., Bhatt R.K.: Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance.–Photosynthetica 35: 255–258, 1998.

    Article  CAS  Google Scholar 

  • Chen C., Dickman M.B.: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii.–P. Natl. Acad. Sci. USA 102: 3459–3464, 2005.

    Article  CAS  Google Scholar 

  • Childs A.C., Mehta D.J., Germer E.W.: Polyamine-dependent gene expression.–Cell Mol. Life. Sci. 60: 1394–1406, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cohen S., Frank E., Doyle W.J. et al.: Types of stressors that increase susceptibility to the common cold in healthy adults.–Health Psychol. 17: 214–223, 1998.

    Article  PubMed  CAS  Google Scholar 

  • DeLacerda C.F., Cambraia J., Oliva M.A. et al.: Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery.–Environ. Exp. Bot. 54: 69–76, 2005.

    Article  CAS  Google Scholar 

  • Duan J.J., Li J., Guo S.R. et al.: Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance.–J. Plant Physiol. 165: 1620–1635, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi R.S., Randhawa N.S.: Evolution of a rapid test for the hidden hunger of zinc in plants.–Plant Soil 40: 445–451, 1974.

    Article  CAS  Google Scholar 

  • Fariduddin Q., Hayat S., Ahmad A.: Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea.–Photosynthetica 41: 281–284, 2003.

    Article  CAS  Google Scholar 

  • Feng G., Zhang F.S., Li X.L. et al.: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots.–Mycorrhiza 12: 185–190, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Geissler N., Hussin S., Koyro H.W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L.–J. Exp. Bot. 60: 137–151, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gil-Amado J.A., Gomez-Jimenez M.C.: Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission.–Planta 235: 1221–1237, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Groppa M.D., Benavides M.P., Tomaro M.L.: Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress.–Plant Sci. 164: 293–299, 2003.

    Article  CAS  Google Scholar 

  • Groppa M.D., Benavides M.P.: Polyamines and abiotic stress: recent advances.–Amino Acids 34: 35–45, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hameed M., Nawaz T., Ashraf M. et al.: Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan.–Turk. J. Bot. 37: 715–724, 2013.

    CAS  Google Scholar 

  • Hayat S., Fariduddin Q., Ali B. et al.: Effect of salicylic acid on growth and enzyme activities of wheat seedlings.–Acta Agron. Hung. 53: 433–437, 2005.

    Article  CAS  Google Scholar 

  • Hayat S., Hasan S.A., Yusuf M. et al.: Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata.–Environ. Exp. Bot. 69: 105–112, 2010.

    Article  CAS  Google Scholar 

  • Hayat S., Maheshwari P., Wani A.S. et al.: Comparative effect of homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L.–Plant Physiol. Bioch. 53: 61–68, 2012.

    Article  CAS  Google Scholar 

  • He Y.L., Liu Y., Chen Q. et al.: Thermotolerance related to antioxidation induced by salicylic acid and heat acclimation in tall fescue seedlings.–J. Plant Phys. 28: 89–95, 2002.

    CAS  Google Scholar 

  • Hopkins W.G., Hüner N.P.A.: Introduction to Plant Physiology. Pp. 503. John Wiley & Sons, Inc., Hoboken 2009.

    Google Scholar 

  • Hussain S.S., Ali M., Ahmad M. et al.: Polyamines: natural and engineered abiotic and biotic stress tolerance in plants.–Biotechnol. Adv. 29: 300–311, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hussein M.M., Balbaa L.K., Gaballah M.S.: Salicylic acid and salinity effects on growth of maize plants.–J. Agric. Biol. Sci. 3: 321–328, 2007.

    CAS  Google Scholar 

  • Idrees M., Naeem M., Khan M.N. et al.: Alleviation of salt stress in lemongrass by salicylic acid.–Protoplasma 249: 709–720, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Iyengar E.R.R., Reddy M.P.: Photosynthesis in highly salt tolerant plants.–In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 897–909. Marcel Dekker, New York 1996.

    Google Scholar 

  • Jaworski E.G.: Nitrate reductase assay in intact plant tissues.–Biochem. Biophys. Res. Co. 43: 1274–1279, 1971.

    Article  CAS  Google Scholar 

  • Jayakannan M., Bose J., Babourina O. et al.: Salicylic acid in plant salinity stress signalling and tolerance.–Plant Growth Regul. 76: 25–40, 2015.

    Article  CAS  Google Scholar 

  • Karim M.A., Fracheboud Y., Stamp P.: Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than of developed leaves.–Physiol. Plantarum 105: 685–693, 1999.

    Article  CAS  Google Scholar 

  • Kausar F., Shahbaz M., Ashraf M. et al.: Protective role of foliar applied nitric oxide in Triticum aestivum under saline stress.–Turk. J. Bot. 37: 1155–1165, 2013.

    Article  CAS  Google Scholar 

  • Khan M.H., Panda S.K.: Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaClsalinity stress.–Acta Physiol. Plant. 30: 81–89, 2008.

    Article  CAS  Google Scholar 

  • Khodary S.E.A.: Effect of salicylic acid on growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants.–Int. J. Agric. Biol. 6: 5–8, 2004.

    CAS  Google Scholar 

  • Kim N.H., Kim B.S., Hwang B.K.: Pepper arginine decarboxylase is required for polyamine and gamma-aminobutyric acid signaling in cell death and defense response.–Plant Physiol. 162: 2067–2083, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koca M., Bor M., Özdemir F. et al.: The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of Sesame cultivars.–Environ. Exp. Bot. 60: 344–351, 2007.

    Article  CAS  Google Scholar 

  • Krishnamurthy R.: Amelioration of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine.–Plant Cell Physiol. 32: 699–703, 1991.

    Article  CAS  Google Scholar 

  • Lakra N., Mishra S.N., Singh D.B. et al.: Exogenous putrescine effect on cation concentration in leaf of Brassica juncea seedlings subjected to Cd and Pb along with salinity stress.–J. Environ. Biol. 27: 263–269, 2006.

    CAS  Google Scholar 

  • Lee J., Sperandio V., Frantz D.E. et al.: An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae.–J. Biol. Chem. 284: 9899–9907, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S., Jin H., Zhang Q.: The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress.–Front. Plant Sci. 7: 1221, 2016.

    PubMed  PubMed Central  Google Scholar 

  • Li T.X., Yue Z., Hua L. et al.: Stable expression of Arabidopsis vacuolar Na+ /H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations.–Chinese Sci. Bull. 55: 1127–1134, 2010.

    Article  CAS  Google Scholar 

  • Liu J., Zhou Y.F., Zhang W.H. et al.: Effects of exogenous polyamines on chloroplast-bound polymine content and photosynthesis of corn suffering salt stress.–Acta Bot. Boreal. 26: 254–258, 2006.

    Google Scholar 

  • Manaa A., Gharbi E., Mimouni H. et al.: Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars.–South Afr. J. Bot. 95: 32–39, 2014.

    Article  CAS  Google Scholar 

  • Mateo A., Mühlenbock P., Rustérucci C. et al.: Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy.–Plant Physiol. 136: 2818–2830, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto M., Underwood W., Koczan J. et al.: Plant stomata function in innate immunity against bacterial invasion.–Cell 126: 969–980, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Metwally A., Finkmemeier I., Georgi M. et al.: Salicylic acid alleviates the cadmium toxcity in barley seedlings.–Plant Physiol. 132: 272–281, 2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mimouni H., Wasti S., Manaa A. et al.: Does salicylic acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters.–OMICS 20: 180–190, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Mir B.A., Khan T.A., Fariduddin Q.: 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress.–Int. J. Adv. Res. 3: 592–608, 2015.

    CAS  Google Scholar 

  • Mittler R.: Oxidative stress, antioxidants and stress tolerance.–Trends Plant Sci. 7: 405–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Moharekar S.T., Lokhande S.D., Hara T. et al.: Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings.–Photosynthetica 41: 315–317, 2003.

    Article  CAS  Google Scholar 

  • Munné-Bosch S.M., Peñuelas J., Llusià J.: A deficiency in salicylic acid alters isoprenoid accumulation in water stressed transgenic Arabidopsis plants.–Plant Sci. 172: 756–762, 2007.

    Article  CAS  Google Scholar 

  • Munns R.: Genes and salt tolerance: bringing them together.–New Phytol. 167: 645–663, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Murphy K.S.T., Kinsey S.T., Durako M.J.: Physiological effects of short term salinity changes on Ruppia maritima.–Aquat Bot. 75: 293–309, 2003.

    Article  Google Scholar 

  • Mutlu F., Bozcuk S.: Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance.–Russ. J. Plant Physl+ 52: 29–34, 2005.

    Article  CAS  Google Scholar 

  • Najafian S., Khoshkhui M., Tavallali V. et al.: Effect of salicylic acid and salinity in thyme (Thymus vulgaris L.): Investigation on changes in gas exchange, water relations, and membrane stabilization and biomass accumulation.–Aust. J. Basic Appl. Sci. 3: 2620–2626, 2009.

    CAS  Google Scholar 

  • Ouerghi Z., Cornic G., Roudani M. et al.: Effect of NaCl on the photosynthesis of two wheat species differing in their sensitivity to salt stress.–J. Plant Physio. 156: 335–340, 2000.

    Article  CAS  Google Scholar 

  • Pál M.E., Horváth T., Janda E. et al.: Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants.–Physiol. Plantarum 125: 356–364, 2005.

    Article  CAS  Google Scholar 

  • Parashar A., Yusuf M., Fariduddin Q. et al.: Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.–Int. J. Biol. Macromol. 70: 551–558, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Pirasteh-Anosheh H., Ranjbar G., Emam Y. et al.: Salicylic-acidinduced recovery ability in salt-stressed Hordeum vulgare plants.–Turk. J. Bot. 38: 112–121, 2014.

    Article  CAS  Google Scholar 

  • Pothipongsa A., Jantaro S., Incharoensakdi A.: Polyamines induced by osmotic stress protect Synechocystis sp. PCC 6803 cells and arginine decarboxylase transcripts against UV-B radiation.–Appl. Biochem. Biotech. 168: 1476–1488, 2012.

    Article  CAS  Google Scholar 

  • Qadir M., Quillé rou E., Nangia V. et al.: Economics of saltinduced land degradation and restoration.–Nat. Resour. Forum. 38: 282–295, 2014.

    Article  Google Scholar 

  • Rady M.M.: Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress.–Sci. Hortic.-Amsterdam 129: 232–237, 2011.

    Article  CAS  Google Scholar 

  • Rajjou L., Belghazi M., Huguet R. et al.: Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms.–Plant Physiol. 141: 910–923, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rider J.E., Hacker A., Mackintosh C.A et al.: Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide.–Amino Acids 33: 231–240, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rosales E.P., Iannone M.F., Groppa M.D. et al.: Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide.–Amino Acids 42: 857–865, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Sekmen A.H., Turkan I, Tanyolac Z.O. et al.: Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark.–Environ. Exp. Bot. 77: 63–76, 2012.

    Article  CAS  Google Scholar 

  • Sen G., Eryilmaz I.E., Ozakca D.: The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.–Phytochemistry 98: 54–59, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Seneratna T., Touchell D., Bunn E. et al.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants.–Plant Growth Regul. 30: 157–161, 2000.

    Article  Google Scholar 

  • Sheokand S., Kumari A., Sawhney V.: Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants.–Physiol. Mol. Biol. Plant. 14: 355–362, 2008.

    Article  CAS  Google Scholar 

  • Silveira V., De Vita A.M., Macedo A.F. et al.: Morphological and polyamine content changes in embryogenic and nonembryogenic callus of sugarcane.–Plant Cell Tiss. Org. 114: 351–364, 2013.

    Article  CAS  Google Scholar 

  • Singh B., Usha K.: Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress.–Plant Growth Regul. 39: 137–141, 2003.

    Article  CAS  Google Scholar 

  • Slaymaker D.H., Navarre D.A., Clark D. et al.: The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response.–P. Natl. Acad. Sci. USA 99: 11640–11645, 2002.

    Article  CAS  Google Scholar 

  • Soussi M., Ocañ a A., Lluch C.: Effect of salt stress growth, photosynthesis and nitrogen fixation in chick-(Cicer arietinum L.).–J. Exp. Bot. 49: 1329–1337, 1998.

    Article  CAS  Google Scholar 

  • Strobel N.E., Kuc A.: Chemical and biological inducers of systemic acquired resistance to pathogens protect cucumber and tobacco from damage caused by paraquat and cupric chloride.–Phytopathology 85: 1306–1310, 1995.

    Article  CAS  Google Scholar 

  • Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis.–Photosynthetica 42: 481–486, 2004.

    Article  CAS  Google Scholar 

  • Sullivan C.Y., Ross W.M.: Selecting the drought and heat resistance in grain sorghum.–In: Mussel H, Staples R.C. (ed.): Stress Physiology in Crop Plants. Pp. 263–281. John Wiley & Sons, Inc, New York 1979.

    Google Scholar 

  • Sung M.S., Chow T.J., Lee T.M.: Polyamine acclimation alleviates hypersalinity-induced oxidative stress in a marine green macroalga, Ulva fasciata, by modulation of antioxidative enzyme gene.–J. Phycol. 47: 538–547, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Szabados L., Savouré A.: Proline: a multifunctional amino acid.–Trends Plant Sci. 15: 89–97, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Szepesi A., Csiszár J., Bajkán S.Z. et al.: Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress.–Acta Biol. Szeged 49: 123–125, 2005.

    Google Scholar 

  • Tabor C.W., Tabor H.: Polyamines.–Annu. Rev. Biochem. 5: 749–790, 1984.

    Article  Google Scholar 

  • Tadayon M.R., Emam Y.: Physiological and morphological responses of two barley cultivars to salt stress and their correlation with grain yield.–Agric. Nat. Res. Sci. Tech. 11: 253–262, 2007.

    CAS  Google Scholar 

  • Tanou G., Filippou P., Belghazi M. et al.: Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress.–Plant J. 72: 585–599, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Tanou G., Ziogas V., Belghazi M. et al.: Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress.–Plant Cell Environ. 37: 864–885, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Tari I., Csiszár J., Szalai G. et al.: Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment.–Acta Biol. Szeged 46: 55–56, 2002.

    Google Scholar 

  • Tiburcio A.F., Kaur-Sawhney R., Galston A.W.: Polyamine metabolism.–In: Miflin B.J., Lea P.J. (ed.): Intermedatory Nitrogen Metabolism. The Biochem of Plants. Pp. 283–325. Academic Press, Cambridge 1990.

    Chapter  Google Scholar 

  • Tisi A., Federico R., Moreno S. et al.: Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation.–Plant Physiol. 157: 200–215, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unni S., Rao K.K.: Protein and lipopolysaccharide profiles of a salt-sensitive Rhizobium sp. and its exopolysaccharidedeficient mutant.–Soil Biol. Biochem. 33: 111–115, 2001.

    Article  CAS  Google Scholar 

  • Uzunova A.N., Popova L.P.: Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants.–Photosynthetica 38: 243–250, 2000.

    Article  CAS  Google Scholar 

  • Verslues P.E., Agarwal M., Katiyar-Agarwal S. et al.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.–Plant J. 45: 523–539, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wang M., Jiang W., Yu H.: Effects of exogenous epibrassinolide on photosynthetic characteristics in tomato (Lycopersicon esculentum Mill) seedlings under weak light stress.–J Agr. Food Chem. 8: 3642–3645, 2010.

    Article  CAS  Google Scholar 

  • Wani A.S., Ahmad A., Hayat S. et al.: Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars?–Environ. Sci. Pollut. R. 23: 13413–13423, 2016.

    Article  CAS  Google Scholar 

  • Wani A.S., Ahmad A., Hayat S. et al.: Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea.–Saudi J. Biol. Sci. 20: 183–193, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X.X., Ding H.D., Zhu Z.W. et al.: Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena L.) seedlings under salt stress.–Afr. J. Biotechnol. 11: 8665–8671, 2012.

    Article  CAS  Google Scholar 

  • Xu G., Magen H., Tarchitzky J. et al.: Advances in chloride nutrition of plants.–Adv. Agr. 68: 97–150, 1999.

    Article  Google Scholar 

  • Yamaguchi K., Takahashi Y., Berberich T. et al.: A protective role for the polyamine spermine against drought stress in Arabidopsis.–Biochem. Biophys. Res. Co. 352: 486–490, 2007.

    Article  CAS  Google Scholar 

  • Yang W.J., Rich P.J., Axtell J.D. et al.: Genotypic variation for glycine betaine in Sorghum.–Crop Sci. 43: 162–169, 2003.

    Article  CAS  Google Scholar 

  • Yusuf M., Hasan S.A., Ali B. et al.: Effect of salicylic acid on salinity induced changes in Brassica juncea.–J. Integr. Plant. Biol. 50: 1–4, 2008.

    Article  CAS  Google Scholar 

  • Zheng C., Jiang D., Liu F. et al.: Effects of salt and water logging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat.–Plant Sci. 176: 575–582, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Fariduddin.

Additional information

Acknowledgements: The authors gratefully acknowledge financial support provided by the Council of Science and Technology, Uttar Pradesh [Project No. CST/D-615], India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fariduddin, Q., Khan, T.A., Yusuf, M. et al. Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica 56, 750–762 (2018). https://doi.org/10.1007/s11099-017-0727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0727-y

Additional key words

Navigation