Skip to main content
Log in

Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants

  • Original paper
  • Published:
Photosynthetica

Abstract

The present study was carried out to assess the role of zinc oxide nanoparticles (ZnO-NPs) in tomato plants on growth, photosynthetic efficiency, and antioxidant system. At 20-d stage of growth, roots of tomato plants were dipped into 0, 2, 4, 8, or 16 mg(ZnO-NPs) L–1 for 15, 30, and 45 min and then seedlings were transplanted in their respective cups and allowed to grow under natural environmental conditions. At 45-d stage of growth, the ZnO-NPs treatments significantly increased growth, photosynthetic efficiency together with activities of carbonic anhydrase and antioxidant systems in a concentration- and duration-dependent manner. Moreover, the treatment by 8 mg(ZnO-NPs) L–1 for 30 min proved to be the most effective and resulted in maximum activities of antioxidant enzymes, proline accumulation and the photosynthetic rate. We concluded that presence of ZnO-NPs improved the antioxidant systems and speeded up proline accumulation that could provide stability to plants and improved photosynthetic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASH-GSH cycles:

glutathione-ascorbate cycle

CA:

carbonic anhydrase

CAT:

catalase

CeO2-NPs:

cerium oxide nanoparticles

Ci:

intercellular CO2 concentration

DAS:

days after sowing

DDW:

double distilled water

E :

transpiration rate

g s :

stomatal conductance

LSD:

least significant difference

NPs:

nanoparticles

NR:

nitrate reductase

P N :

net photosynthetic rate

POX:

peroxidase

ROS:

reactive oxygen species

SiO2-NPs:

silicon oxide nanoparticles

SOD:

superoxide dismutase

SPAD:

soil and plant analysis development

ZnO-NPs:

zinc oxide nanoparticles.

References

  • Ajouri A., Asgedom H., Becker M.: Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. — J. Plant Nutr. Soil Sc. 167: 630–636, 2004.

    Article  Google Scholar 

  • Alia., Pardha Saradhi P., Mohanty P.: Involvment of proline in protecting thylakoid membranes against free radical-induce photodamage. — Photochem. Photobiol. B 38: 253–257, 1997.

    Article  CAS  Google Scholar 

  • An J., Zhang M., Wang S. et al.: Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. — LWT-Food Sci. Technol. 41: 1100–1107, 2008.

    Article  CAS  Google Scholar 

  • Bernhardt E.S., Colman B.P., Hochella M.F. et al.: An ecological perspective on nanomaterial impacts in the environment. — J. Environ. Qual. 39: 1954–1965, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Berube D.M., Searson E.M., Morton T.S. et al.: Project on emerging nanotechnologies-consumer product inventory evaluated. — Nanotech. Law Business 7: 152, 2010.

    Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I.: Role of zinc in protecting plant cells from reactive oxygen species. — New Phytol. 146: 185–205, 2000.

    Article  CAS  Google Scholar 

  • Castiglione M.R., Cremonini R.: Nanoparticles and higher plants. — Caryologia 62: 161–165, 2009.

    Article  Google Scholar 

  • Chinnamuthu C.R., Boopathi M.P.: Nanotechnology and agroecosystem. — Madras Agri. J. 96: 17–31, 2009.

    Google Scholar 

  • Christou P., McCabe D.E., Swain W.F.: Stable transformation of soybean callus by DNA coated gold particles. — Plant Physiol. 87: 671–674, 1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz K.J., Herth.: Plant nanotoxicology. — Cell Press 16: 582–589, 2011.

    CAS  Google Scholar 

  • Dwivedi R.S., Randhawa N.S.: Evaluation of rapid test for hidden hunger of zinc in plants. — Plant Soil 40: 445–451, 1974.

    Article  CAS  Google Scholar 

  • Fabrega J., Luoma S.N., Tyler C.R. et al.: Silver nanoparticles: behaviour and effects in the aquatic environment. — Environ. Int. 37: 517–531, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Fukui H., Horie M., Endoh S. et al.: Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. — Chem. Biol. Interact. 198: 29–37, 2012.

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez S., Bernales I., Cristobal S.: Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. — BMC Genomics 16: 341, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg N., Manchanda G.: ROS generation in plants: boon or bane? — Plant Biosyst. 143: 81–96, 2009.

    Article  Google Scholar 

  • Ge Y., Schimel JP., Holden PA.: Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. — Appl. Environ. Microb. 78: 6749–6758, 2012.

    Article  CAS  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Bioch. 48: 909–930, 2010.

    Article  CAS  Google Scholar 

  • Govorov A.O., Carmeli I.: Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. — Nano. Lett. 7: 620–625, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M., Afifipour Z., Mozafarian M.: The effect of N-Si on tomato seed germination under salinity levels. — J. Biol. Environ. Sci. 6: 87–90, 2012.

    Google Scholar 

  • Helaly M.N., El-Metwally M.A., El-Hoseiny H. et al.: Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. — Aust. J. Crop Sci. 8: 612–624, 2014.

    CAS  Google Scholar 

  • Hewitt E.J.: Sand and Water Culture Methods Used in the Study of Plant Nutrition. Technical Communication No. 22. Pp. 104. Commonwealth Bureau, London 1966.

    Google Scholar 

  • Jaworski E.G.: Nitrate reductase assay in intact plant tissue. — Biochem. Biophys. Res. Co. 43: 1274–1279, 1971.

    Article  CAS  Google Scholar 

  • Kalteh M., Alipour Z.T., Ashraf S. et al.: Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. — J. Chem. Health Risks 4: 49–55, 2014.

    CAS  Google Scholar 

  • Keller A.A., McFerran S., Lazareva A. et al.: Global life cycle releases of engineered nanomaterials. — J. Nano. Res. 15: 1–17, 2013.

    Article  Google Scholar 

  • Khan S.T., Ahmad J., Ahamed M. et al.: Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth and attenuate biofilm formation activity of Streptococcus mitis. — J. Biol. Inorg. Chem. 21: 295–303, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Khan T.A., Fariduddin Q., Yusuf M.: Lycopersicon esculentum under low temperature stress: an approach toward enhanced antioxidants and yield. — Environ. Sci. Pollut. R. 22: 14178–14188, 2015.

    Article  CAS  Google Scholar 

  • Khan J., Brennan D.M., Bradley N. et al.: 3 Nitrotyrosine in the proteins of human plasma determined by an ELISA method. — Biochem. J. 330: 795–801, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M.V., de Silva K., Biris A.S. et al.: Carbon nanotubes induce growth enhancement to tobacco cells. — ACS Nano 6: 2128–2135, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lei Z., Mingyu S., Chao L. et al.: Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. — Biol. Trace. Elem. Res. 119: 68–76, 2007.

    Article  PubMed  Google Scholar 

  • Lin D., Xing B.: Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. — Environ. Pollut.150: 243–50, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ma X., Geiser-Lee J., Deng Y. et al.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. — Sci. Total Environ. 408: 3053–3061, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P., Dhoke S.K., Khanna A.S.: Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. — J. Nanotechol. 2011: 696535, 2011.

    Google Scholar 

  • Nair R., Poulose A.C., Nagaoka Y. et al.: Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolables for plants. — Fluorescence 21: 2057–2068, 2011.

    Article  CAS  Google Scholar 

  • Noji T., Kamidaki C., Kawakami K. et al.: Photosynthetic oxygen evolution in mesoporous silica material adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. — Langmuir 27: 705–713, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Oancea S., Padureanu S., Oancea A.V.: Growth dynamics of corn plants during anionic clays action. — Lucrări Ştiinţifice 52: 212–217, 2009.

    Google Scholar 

  • Piccinno F., Gottschalk F., Seeger S. et al.: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. — J. Nano. Res. 14: 1109, 2010.

    Article  Google Scholar 

  • Poma A., Giorgio M.L.D.: Toxicgenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: A Review. — Curr. Genomics 9: 571–585, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y. et al.: Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. — J. Plant Nutr. 35: 905–927, 2012.

    Article  CAS  Google Scholar 

  • Raliya R., Nair R, Chavalmane S et al.: Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. — Metallomics 7: 1584–1594, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh M., Palanisamy K., Babu K. et al.: Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. — J. Global Biosci. 3: 415–422, 2014.

    Google Scholar 

  • Salama H.M.H.: Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). — Int. Res. J. Biotech. 3: 190–197, 2012.

    Google Scholar 

  • Schwab F., Zhai G., Kern M. et al.: Barriers, pathways and processes for uptake, translocation, and accumulation of nanomaterials in Plants. Critical review. — Nanotoxicology 10: 257–278, 2016.

    CAS  PubMed  Google Scholar 

  • Siddiqui M.H., Al-Whaibi M.H., Faisal M., Al Sahli A.A.: Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. — Environ. Toxicol. Chem. 33: 2429–2437, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Szabados L., Savoure A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam P., Priyanka N., Manikandan K. et al.: Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). — Plant Physiol. Bioch. 110: 118–127, 2017.

    Article  CAS  Google Scholar 

  • Wang Q., Ma X., Zhang W. et al.: The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. — Metallomics 4: 1105–1112, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Welch R.M., Webb M.J., Lonegaran J.F.: Zinc in membrane function and its role in phosphorus toxicity. — In: Scaife A. (ed.): Proceedings of 9th International Plant Nutrition. Pp. 710–715. Commonw. Agric. Bur., Farnham 1982.

    Google Scholar 

  • Xie Y., Li B., Zhang Q. et al.: Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. — J. Nanjing Forest Univ. 2: 59–63, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizan, M., Faraz, A., Yusuf, M. et al. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56, 678–686 (2018). https://doi.org/10.1007/s11099-017-0717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0717-0

Additional key words

Navigation