Skip to main content
Log in

Carbonic anhydrase — a universal enzyme of the carbon-based life

  • Review
  • Published:
Photosynthetica

Abstract

Carbonic anhydrase (CA) is a metalloenzyme that performs interconversion between CO2 and the bicarbonate ion (HCO3 ). CAs appear among all taxonomic groups of three domains of life. Wide spreading of CAs in nature is explained by the fact that carbon, which is the major constituent of the enzyme’s substrates, is a key element of life on the Earth. Despite the diversity of CAs, they all carry out the same reaction of CO2/HCO3 interconversion. Thus, CA obviously represents a universal enzyme of the carbon-based life. Within the classification of CAs, here we proposed the existence of an extensive family of CA-related proteins (γCA-RPs)–the inactive forms of γ-CAs, which are widespread among the Archaea, Bacteria, and, to a lesser extent, in Eukarya. This review focuses on the history of CAs discovery and integrates the most recent data on their classification, catalytic mechanisms, and physiological roles at various organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

carbonic anhydrase

CAI:

carbonic anhydrase inhibitor

CA-RP:

carbonic anhydrase-related protein

CCM:

CO2-concentrating mechanism

Ci :

inorganic carbon compounds (CO2 + HCO3 )

hCA:

human carbonic anhydrase

PSR:

proton shuttle residue

References

  • Alber B.E., Ferry J.G.: A carbonic anhydrase from the archaeon Methanosarcina thermophila. - P. Natl. Acad. Sci. USA 91: 6909–6913, 1994.

    Article  CAS  Google Scholar 

  • Alterio V., Di Fiore A., D’Ambrosio K. et al.: Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? - Chem. Rev. 112: 4421–4468, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Alterio V., Langella E., Viparelli F. et al.: Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. - Biochimie 94: 1232–1241, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Amoroso G., Morell-Avrahov L., Mü ller D., et al.: The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. - Mol. Microbiol. 56: 549–558, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Andersson B., Nyman P.O., Strid L.: Amino acid sequence of human erythrocyte CA B. - Biochem. Bioph. Res. Co. 48: 670–677, 1972.

    Article  CAS  Google Scholar 

  • Aspatwar A., Tolvanen M.E., Ortutay C., Parkkila S.: Carbonic anhydrase related proteins: molecular biology and evolution.–In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 135–156. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Atkins C.A., Patterson B.D., Graham D.: Plant carbonic anhydrases I. Distribution of types among species. - Plant Physiol. 50: 214–217, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank C.E., Sánchez-Baracaldo P.: Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise of atmospheric oxygen. - Geobiology 8: 1–23, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Boone C.D., Pinard M., McKenna R., Silverman D.: Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer.–In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 31–52. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Coleman J.R.: Carbonic anhydrase and its role in photosynthesis.–In: Leegood R.C., Sharkey T.D., von Caemmerer S. (ed.): Photosynthesis: Physiology and Metabolism. Pp. 353–367. Kluwer Academic Publishers, Dordrecht 2000.

    Chapter  Google Scholar 

  • Cot S.S., So A.K., Espie G.S.: A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. - J. Bacteriol. 190: 936–945, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cox E.H., McLendon G.L., Morel F.M. et al.: The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. - Biochemistry 39: 12128–12130, 2000.

    Article  CAS  PubMed  Google Scholar 

  • de Araujo C., Arefeen D., Tadesse Y. et al.: Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120. - Photosynth. Res. 121: 135–150, 2014.

    Article  PubMed  CAS  Google Scholar 

  • De Simone G., Di Fiore A., Capasso C., Supuran C.T.: The zinc coordination pattern in the η-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. - Bioorg. Med. Chem. Lett. 25: 1385–1389, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Del Prete S., Vullo D., De Luca V. et al.: Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. - J. Enzyme Inhib. Med. Chem. 29: 906–911, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Del Prete S., Vullo D., Fisher G.M. et al.: Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum–The η-carbonic anhydrases. - Bioorg. Med. Chem. Lett. 24: 4389–4396, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Del Prete S., Vullo D., Scozzafava A. et al.: Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. - Bioorgan. Med. Chem. 22: 531–537, 2014.

    Article  CAS  Google Scholar 

  • Domsic J.F., Avvaru B.S., Kim C.U. et al.: Entrapment of carbon dioxide in the active site of carbonic anhydrase II.–J. Biol. Chem. 283: 30766–30771, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edman P., Begg G.: A protein sequenator. - Eur. J. Biochem. 1: 80–91, 1967.

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S., Pöggeler S.: Carbonic anhydrases in fungi. - Microbiology 156: 23–29, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Everson R.G.: Carbonic anhydrase and CO2 fixation in isolated chloroplasts. - Phytochemistry 9: 25–32, 1970.

    Article  CAS  Google Scholar 

  • Fernández C., Díaz E., García J.L.: Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. - Environ. Microb. Rep. 6: 239–250, 2014..

    Article  CAS  Google Scholar 

  • Fernández P.A., Hurd C.L., Roleda M.Y.: Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. - J. Phycol. 50: 998–1008, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Ferry J.G.: The gamma class of carbonic anhydrases. - Biochim. Biophys. Acta 1804: 374–381, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Field C.B., Behrenfel, M.J., Randerson J.T., Falkowski P.: Primary production of the biosphere: integrating terrestrial and oceanic components. - Science 281: 237–240, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Fromm S., Senkler J., Zabaleta E. et al.: The carbonic anhydrase domain of plant mitochondrial complex I. - Physiol. Plantarum 157: 289–296, 2016.

    Article  CAS  Google Scholar 

  • Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 9–30. Springer Science + Business Media, Dordrecht 2014.

  • Frost S.C.: Physiological functions of the alpha class of carbonic anhydrases. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 9–30. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Fukuzawa H., Suzuki E., Komukai Y., Miyachi S.: A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC 7942.–P. Natl. Acad. Sci. USA 89: 4437–4441, 1992.

    Article  CAS  Google Scholar 

  • Giordano M., Beardall J., Raven J.A.: CO2 concentrating mechanism in algae: mechanisms, environmental modulation, and evolution. - Annu. Rev. Plant. Biol. 56: 99–131, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Henderson L.E., Henriksson D., Nyman P.O.: Amino acid sequence of human erythrocyte carbonic anhydrase C. - Biochem. Bioph. Res. Co. 52: 1388–1394, 1973.

    Article  CAS  Google Scholar 

  • Henry R.P.: Multiple roles of carbonic anhydrase in cellular transport and metabolism. - Annu. Rev. Physiol. 58: 523–538, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmett D., Hopkins P.J., Tashian R.E., Czelusniak J.: Origins and molecular evolution of the carbonic anhydrase isozymes. - Ann. NY Acad. Sci. 429: 338–358, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmett D., Tashian R.E.: Functional diversity, conservation and convergence in the evolution of the α-, β- and γ- carbonic anhydrase gene families. - Mol. Phylogenet. Evol. 5: 50–77, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Hopkinson B.M., Dupont C.L., MatsudaY.: The physiology and genetics of CO2 concentrating mechanisms in model diatoms. - Curr. Opin. Plant Biol. 31: 51–57, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Iverson T.M., Alber B.E., Kisker C. et al.: A closer look at the active site of γ-carbonic anhydrases: High resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. - Biochemistry 39: 9222–9231, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Jansson C., Northen T.: Calcifying cyanobacteria–the potential of biomineralization for carbon capture and storage. - Curr. Opin. Biotechnol. 21: 365–371, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Jeyakanthan J., Rangarajan S., Mridula P. et al.: Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. - Acta Crystallogr. D 64: 1012–1019, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Jungnick N., Ma Y., Mukherjee B. et al.: The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. - Photosynth. Res. 121: 159–173, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Kamo T., Shimogawara K., Fukuzawa H. et al.: Subunit constitution of carbonic anhydrase from Chlamydomonas reinhardtii. - Eur. J. Biochem. 192: 557–562, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan A., Badger M.R., Berry J. A. Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis response to external CO2 concentration.–Planta 149: 219–226, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Karrasch M., Bott M., Thauer R.K.: Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. - Arch. Microbiol. 151: 137–142, 1989.

    Article  CAS  Google Scholar 

  • Keilin D., Mann T.: Activity of purified carbonic anhydrase. - Nature 153: 107–108, 1944.

    Article  CAS  Google Scholar 

  • Kern D.M.: The hydration of carbon dioxide. - J. Chem. Educ. 37: 14–23, 1960.

    Article  CAS  Google Scholar 

  • Khalifah R.G.: The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. - J. Biol. Chem. 246: 2561–2573, 1971.

    CAS  PubMed  Google Scholar 

  • Kimber M.S.: Carboxysomal carbonic anhydrases. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 89–103. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Klodmann J., Sunderhaus S., Nimtz M. et al.: Internal architecture of mitochondrial complex I from Arabidopsis thaliana.–Plant Cell 22: 797–810, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konhauser K.: Deepening the early oxygen debate. - Nat. Geosci. 2: 241–242, 2009.

    Article  CAS  Google Scholar 

  • Koonin E.V., Dolja V.V.: Virus world as an evolutionary network of viruses and capsidless selfish elements. - Microbiol. Mol. Biol. Rev. 78: 278–303, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozliak E.I., Guilloton M.B., Gerami-Nejad M. et al.: Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase. - J. Bacteriol. 176: 5711–5717, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R.S., Ferry J.G.: Prokaryotic carbonic anhydrases of Earth's environment. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 77–87. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Kupriyanova E., Villarejo A., Markelova A. et al.: Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes.–Microbiology 153: 1149–1156, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova E.V, Pronina N.A.: Carbonic anhydrase: enzyme that has transformed the biosphere. - Russ. J. Plant Physl+ 58: 197–209, 2011.

    Article  CAS  Google Scholar 

  • Kupriyanova E.V., Sinetova M.A., Cho S.M. et al.: CO2- concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role and evolutionary origin. - Photosynth. Res. 117: 133–146, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova E.V., Sinetova M.A., Cho S.M. et al.: Specific features of the system of carbonic anhydrases of alkaliphilic cyanobacteria. - Russ. J. Plant. Physl+ 60: 465–471, 2013.

    Article  CAS  Google Scholar 

  • Kustka A.B., Milligan A.J., Zheng H.Y. et al.: Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. - New Phytol. 204: 507–520, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Lane T.W., Morel F.M.: A biological function for cadmium in marine diatoms. - P. Natl. Acad. Sci. USA 97: 4627–4631, 2000.

    Article  CAS  Google Scholar 

  • Lane T.W., Saito M.A., George G.N. et al.: A cadmium enzyme from a marine diatom. - Nature 435: 42, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Larsson C., Axelsson L.: Bicarbonate uptake and utilization in marine macroalgae. - Eur. J. Phycol. 34: 79–86, 1999.

    Article  Google Scholar 

  • Liljas A., Kannan K.K., Bergstén P.C. et al.: Crystal structure of human carbonic anhydrase C. - Nature 235: 131–137, 1972.

    CAS  Google Scholar 

  • Liljas A., Laurberg M.: A wheel invented three times. The molecular structures of the three carbonic anhydrases. - EMBO Rep. 1: 16–17, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K.-T.D., Deutsch H.F.: Human carbonic anhydrase. XI. The complete primary structure of carbonic anhydrase B. - J. Biol. Chem. 248: 1885–1893, 1973.

    CAS  PubMed  Google Scholar 

  • Lin K.-T.D., Deutsch H.F.: Human carbonic anhydrase. XII. The complete primary structure of carbonic anhydrase C. - J.Biol. Chem. 249: 2329–2337, 1974.

    CAS  PubMed  Google Scholar 

  • Lindskog S.: Structure and mechanism of carbonic anhydrase. - Pharmacol. Therapeut. 74: 1–20, 1997.

    Article  CAS  Google Scholar 

  • Long B.M., Rae B.D., Rolland V. et al.: Cyanobacterial CO2- concentrating mechanism components: function and prospects for plant metabolic engineering. - Curr. Opin. Plant. Biol. 31: 1–8, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M.: Evolution of carbonic anhydrase in C4 plants. - Curr. Opin. Plant Biol. 31: 16–22, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Markelova A.G., Sinetova M.P., Kupriyanova E.V., Pronina N.A.: Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid in chloroplast and pyrenoid of Chlamydomonas reinhardtii. - Russ. J. Plant. Physl+. 56: 761–768, 2009.

    Article  CAS  Google Scholar 

  • McKenna R., Supuran C.T.: Carbonic anhydrase inhibitors drug design.–In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 291–323. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Meldrum N.N., Rounghton F.J.W.: Carbonic anhydrase: its preparation and properties. - J. Physiol. 80: 113–142, 1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlin C., Masters M., McAteer S., Coulson A.: Why is carbonic anhydrase essential to Escherichia coli? - J. Bacteriol. 185: 6415–6424, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi S., Mizushima T., Yamashita E. et al.: X-ray structure of β-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. - J. Biol. Chem. 275: 5521–5526, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Moroney J.V., Ma Y., Frey W.D. et al.: The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. - Photosynth. Res. 109

  • Hewett-Emmett D., Tashian R.E.: Functional diversity, conservation and convergence in the evolution of the α-, β- and γ- carbonic anhydrase gene families.–Mol. Phylogenet. Evol. 5: 50–77, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Hopkinson B.M., Dupont C.L., MatsudaY.: The physiology and genetics of CO2 concentrating mechanisms in model diatoms. - Curr. Opin. Plant Biol. 31: 51–57, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Iverson T.M., Alber B.E., Kisker C. et al.: A closer look at the active site of γ-carbonic anhydrases: High resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. - Biochemistry 39: 9222–9231, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Jansson C., Northen T.: Calcifying cyanobacteria–the potential of biomineralization for carbon capture and storage. - Curr. Opin. Biotechnol. 21: 365–371, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Jeyakanthan J., Rangarajan S., Mridula P. et al.: Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. - Acta Crystallogr. D 64: 1012–1019, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Jungnick N., Ma Y., Mukherjee B. et al.: The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces. - Photosynth. Res. 121: 159–173, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Kamo T., Shimogawara K., Fukuzawa H. et al.: Subunit constitution of carbonic anhydrase from Chlamydomonas reinhardtii. - Eur. J. Biochem. 192: 557–562, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan A., Badger M.R., Berry J.A. Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis response to external CO2 concentration.–Planta 149: 219–226, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Karrasch M., Bott M., Thauer R.K.: Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. - Arch. Microbiol. 151: 137–142, 1989.

    Article  CAS  Google Scholar 

  • Keilin D., Mann T.: Activity of purified carbonic anhydrase. - Nature 153: 107–108, 1944.

    Article  CAS  Google Scholar 

  • Kern D.M.: The hydration of carbon dioxide. - J. Chem. Educ. 37: 14–23, 1960.

    Article  CAS  Google Scholar 

  • Khalifah R.G.: The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. - J. Biol. Chem. 246: 2561–2573, 1971.

    CAS  PubMed  Google Scholar 

  • Kimber M.S.: Carboxysomal carbonic anhydrases. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 89–103. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Klodmann J., Sunderhaus S., Nimtz M. et al.: Internal architecture of mitochondrial complex I from Arabidopsis thaliana.–Plant Cell 22: 797–810, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konhauser K.: Deepening the early oxygen debate. - Nat. Geosci. 2: 241–242, 2009.

    Article  CAS  Google Scholar 

  • Koonin E.V., Dolja V.V.: Virus world as an evolutionary network of viruses and capsidless selfish elements. - Microbiol. Mol. Biol. Rev. 78: 278–303, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozliak E.I., Guilloton M.B., Gerami-Nejad M. et al.: Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase. - J. Bacteriol. 176: 5711–5717, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R.S., Ferry J.G.: Prokaryotic carbonic anhydrases of Earth's environment. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 77–87. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Kupriyanova E., Villarejo A., Markelova A. et al.: Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes.–Microbiology 153: 1149–1156, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova E.V, Pronina N.A.: Carbonic anhydrase: enzyme that has transformed the biosphere. - Russ. J. Plant Physl+ 58: 197–209, 2011.

    Article  CAS  Google Scholar 

  • Kupriyanova E.V., Sinetova M.A., Cho S.M. et al.: CO2- concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role and evolutionary origin. - Photosynth. Res. 117: 133–146, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova E.V., Sinetova M.A., Cho S.M. et al.: Specific features of the system of carbonic anhydrases of alkaliphilic cyanobacteria. - Russ. J. Plant. Physl+ 60: 465–471, 2013.

    Article  CAS  Google Scholar 

  • Kustka A.B., Milligan A.J., Zheng H.Y. et al.: Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. - New Phytol. 204: 507–520, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Lane T.W., Morel F.M.: A biological function for cadmium in marine diatoms. - P. Natl. Acad. Sci. USA 97: 4627–4631, 2000.

    Article  CAS  Google Scholar 

  • Lane T.W., Saito M.A., George G.N. et al.: A cadmium enzyme from a marine diatom. - Nature 435: 42, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Larsson C., Axelsson L.: Bicarbonate uptake and utilization in marine macroalgae. - Eur. J. Phycol. 34: 79–86, 1999.

    Article  Google Scholar 

  • Liljas A., Kannan K.K., Bergstén P.C. et al.: Crystal structure of human carbonic anhydrase C. - Nature 235: 131–137, 1972.

    CAS  Google Scholar 

  • Liljas A., Laurberg M.: A wheel invented three times. The molecular structures of the three carbonic anhydrases. - EMBO Rep. 1: 16–17, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin K.-T.D., Deutsch H.F.: Human carbonic anhydrase. XI. The complete primary structure of carbonic anhydrase B. - J. Biol. Chem. 248: 1885–1893, 1973.

    CAS  PubMed  Google Scholar 

  • Lin K.-T.D., Deutsch H.F.: Human carbonic anhydrase. XII. The complete primary structure of carbonic anhydrase C. - J. Biol. Chem. 249: 2329–2337, 1974.

    CAS  PubMed  Google Scholar 

  • Lindskog S.: Structure and mechanism of carbonic anhydrase. - Pharmacol. Therapeut. 74: 1–20, 1997.

    Article  CAS  Google Scholar 

  • Long B.M., Rae B.D., Rolland V. et al.: Cyanobacterial CO2- concentrating mechanism components: function and prospects for plant metabolic engineering. - Curr. Opin. Plant. Biol. 31: 1–8, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M.: Evolution of carbonic anhydrase in C4 plants. - Curr. Opin. Plant Biol. 31: 16–22, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Markelova A.G., Sinetova M.P., Kupriyanova E.V., Pronina N.A.: Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid in chloroplast and pyrenoid of Chlamydomonas reinhardtii. - Russ. J. Plant. Physl+. 56: 761–768, 2009.

    Article  CAS  Google Scholar 

  • McKenna R., Supuran C.T.: Carbonic anhydrase inhibitors drug design. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 291–323. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Meldrum N.N., Rounghton F.J.W.: Carbonic anhydrase: its preparation and properties.–J. Physiol. 80: 113–142, 1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlin C., Masters M., McAteer S., Coulson A.: Why is carbonic anhydrase essential to Escherichia coli? - J. Bacteriol. 185: 6415–6424, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi S., Mizushima T., Yamashita E. et al.: X-ray structure of β-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. - J. Biol. Chem. 275: 5521–5526, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Moroney J.V., Ma Y., Frey W.D. et al.: The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. - Photosynth. Res. 109: 133–149, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Nasir A., Kim K.M., Caetano-Anolles G.: Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. - BMC Evol. Biol. 12: 156, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neish A.C.: Studies on chloroplasts, their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. - Biochem. J. 33: 300–308, 1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichiporovich A.A.: [Light and carbon nutrition of plants–photosynthesis] Pp. 12. Publ. Academy of Sciences of the USSR, Moscow 1955. [In Russian]

    Google Scholar 

  • Parfrey L.W. Barbero E., Lasser E. et al.: Evaluating support for the current classification of eukaryotic diversity. - PLoS Genet. 2: e220, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park H., Song B., Morel F.M.M.: Diversity of the cadmiumcontaining carbonic anhydrase in marine diatoms and natural waters.–Environ. Microbiol. 9: 403–413, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Park H.M., Park J.H., Choi J.W. et al.: Structures of the gammaclass carbonic anhydrase homologue YrdA suggest a possible allosteric switch. - Acta Crystallogr. 68: 920–926, 2012.

    CAS  Google Scholar 

  • Peãa K.L., Castel S.E., de Araujo C. et al.: Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. - P. Natl. Acad. Sci. USA 107: 2455–2460, 2010.

    Article  Google Scholar 

  • Price G.D., Badger M.R., Wodger F.J., Long B.M.: Advances in understanding the cyanobacterial CO2-concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. - J. Exp. Bot. 59: 1441–1461, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Price G.D., Coleman, J.R., Badger M.R.: Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC 7942. - Plant Physiol. 100: 784–793, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price G.D., von Caemmerer S., Evans J.R. et al.: Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. - Planta 193: 331–340, 1994.

    Article  CAS  Google Scholar 

  • Price G.D.: Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. - Photosynth. Res. 109: 47–57, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Pronina N.A., Borodin V.V.: CO2 stress and CO2 concentration mechanism: investigation by means of photosystem-deficient and carbonic anhydrase-deficient mutants of Chlamydomonas reinhardtii. - Photosynthetica 28: 515–522, 1993.

    CAS  Google Scholar 

  • Rabinowitch E.I.: Photosynthesis and Related Processes. Pp. 177. Interscience Publishers, New York 1945.

    Google Scholar 

  • Rautenberger R., Fernández P.A., Strittmatter M. et al.: Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta). - Ecol. Evol. 5: 874–888, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raven J.A., Beardall J.: CO2 concentrating mechanisms and environmental change. - Aquat. Bot. 118: 24–37, 2014.

    Article  CAS  Google Scholar 

  • Raven J.A., Beardall J.: The ins and outs of CO2. - J. Exp. Bot. 67: 1–13, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Raven J.A., Hurd C.J.: Ecophysiology of photosynthesis in macroalgae. - Photosynth. Res. 113: 105–125, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Reungprapavut S., Krungkrai S.R., Krungkrai J.: Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy. - J. Enzym. Inhib. Med. Ch. 19: 249–256, 2004.

    Article  CAS  Google Scholar 

  • Roberts S.B., Lane T.W., Morel F.M.: Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). - J. Phycol. 33: 845–850, 1997.

    Article  CAS  Google Scholar 

  • Rowlett R.S.: Structure and catalytic mechanism of β-carbonic anhydrases. - In: Frost S.C., McKenna R. (ed.): Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcell. Biochem. Pp. 53–76. Springer Science + Business Media, Dordrecht 2014.

    Chapter  Google Scholar 

  • Rudenko N.N., Ignatova L.K., Fedorchuk T.P., Ivanov B.N.: Carbonic anhydrases in photosynthetic cells of higher plants.–Biochemistry-Moscow+ 80: 674–687, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Sanger F., Niclein S., Coulson A.R.: DNA sequencing with chain-terminating inhibitors. - P. Natl. Acad. Sci. USA 74: 5463–5467, 1977.

    Article  CAS  Google Scholar 

  • Sawaya M.R., Cannon G.C., Heinhorst S. et al.: The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. - J. Biol. Chem. 17: 7546–7555, 2006.

    Article  CAS  Google Scholar 

  • Shutova T., Kenneweg H., Buchta J. et al.: The photosystem IIassociated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. - EMBO J. 27: 782–791, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman D.N., Lindskog S.: The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting proteolysis of water. - Acc. Chem. Res. 21: 30–36, 1988.

    Article  CAS  Google Scholar 

  • Silverman D.N., McKenna R.: Solvent-mediated proton transfer in catalysis by carbonic anhydrase. - Acc. Chem. Res. 40: 669–675, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sinetova M.A., Kupriyanova E.V., Markelova A.G. et al.: Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. - Biochim. Biophys. Acta 1817: 1248–1255, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Smith K.S., Ferry J.G.: Prokaryotic carbonic anhydrases. - FEMS Microbiol. Rev. 24: 335–366, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Smith K.S., Jakubzic C., Whitta T.S., Ferry J.G.: Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. - P. Natl. Acad. Sci. USA 96: 15184–15189, 1999.

    Article  CAS  Google Scholar 

  • Smith К.S., Ferry J.G.: А plant type (β-class) carbonic anhydrase from the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. - J. Bacteriol. 181: 6247–6253, 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  • So A.K., Espie G.S., Williams E.B. et al.: A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. - J. Bacteriol. 186: 623–630, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltes-Rak E., Mulligan M.E., Coleman J.R.: Identification and characterization of gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. - J. Bacteriol. 179: 769–774, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadie W.C., O’Brien H.: The catalysis of the hydration of carbonic dioxide and dehydration of carbonic acid by the enzyme from red blood cells. - J. Biol. Chem. 103: 521–529, 1933.

    CAS  Google Scholar 

  • Suarez Covarrubias A., Larsson T.A., Hégbom M. et al.: Structure and function of carbonic anhydrases from Mycobacterium tuberculosis. - J. Biol. Chem. 280: 18782–18789, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Supuran C.T, Scozzafava A.: Carbonic anhydrases as targets for medicinal chemistry. - Bioorgan. Med. Chem. 15: 4336–4350, 2007.

    Article  CAS  Google Scholar 

  • Supuran C.T.: Carbonic anhydrases: catalytic and inhibition mechanisms, distribution and physiological roles. - In: Supuran C.T., Scozzafava A., Conway J. (ed.): Carbonic Anhydrase: its Inhibitors and Activators. Pp. 1–24. CRC Press, Boca Raton 2004.

    Chapter  Google Scholar 

  • Supuran C.T.: How many carbonic anhydrase inhibition mechanisms exist? - J. Enzym. Inhib. Med. Ch. 31: 345–360, 2016.

    Article  CAS  Google Scholar 

  • Supuran C.T.: Structure and function of carbonic anhydrases. - Biochem. J. 473: 2023–2032, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A., Kumar P., Singh S., Ansari S.A.: Carbonic anhydrase in relation to higher plants. - Photosynthetica 43: 1–11, 2005.

    Article  CAS  Google Scholar 

  • Tripp B.C., Smith K., Ferry J.G.: Carbonic anhydrase: New insights for an ancient enzyme. - J. Biol. Chem. 276: 48615–48618, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Veitch F.P., Blankenship L.C.: Carbonic anhydrase activity in bacteria. - Nature 197: 76–77, 1963.

    Article  CAS  PubMed  Google Scholar 

  • Vullo D., Del Prete S., Osman S.M. et al.: Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. - Bioorg. Med. Chem. Lett. 24: 275–279, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Woese C.R., Kandler O., Wheelis M.L.: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. - P. Natl. Acad. Sci. USA 87: 4576–4579, 1990.

    Article  CAS  Google Scholar 

  • Xu Y., Feng L., Jeffrey P.D. et al.: Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. - Nature 452: 56–61, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zabaleta E., Martin M.V., Braun H.-P: A basal carbon concentrating mechanism in plants?–Plant Sci. 187: 97–104, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Zavarzin G.A.: The rise of the biosphere. - Microbiology+ 66: 603–611, 1997.

    CAS  Google Scholar 

  • Zavarzin G.A.: Microbial geochemical calcium cycle. - Microbiology+ 71: 1–17, 2002.

    CAS  Google Scholar 

  • Zimmerman S.A., Tomb J.F., Ferry J.G.: Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the β-class of carbonic anhydrases. - J. Bacteriol. 192: 1353–1360, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kupriyanova.

Additional information

Acknowledgements

This work was supported by the grant from Russian Science Foundation No. 14-24-00020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupriyanova, E., Pronina, N. & Los, D. Carbonic anhydrase — a universal enzyme of the carbon-based life. Photosynthetica 55, 3–19 (2017). https://doi.org/10.1007/s11099-017-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0685-4

Additional key words

Navigation