Skip to main content
Log in

Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyanobacteria possess an environmental adaptation known as a CO2 concentrating mechanism (CCM) that evolved to improve photosynthetic performance, particularly under CO2-limiting conditions. The CCM functions to actively transport dissolved inorganic carbon species (Ci; HCO3 and CO2) resulting in accumulation of a pool of HCO3 within the cell that is then utilised to provide an elevated CO2 concentration around the primary CO2 fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). Rubisco is encapsulated in unique micro-compartments known as carboxysomes and also provides the location for elevated CO2 levels in the cell. Five distinct transport systems for active Ci uptake are known, including two types of Na+-dependent HCO3 transporters (BicA and SbtA), one traffic ATPase (BCT1) for HCO3 uptake and two CO2 uptake systems based on modified NADPH dehydrogenase complexes (NDH-I3 and NDH-I4). The genes for a number of these transporters are genetically induced under Ci limitation via transcriptional regulatory processes. The in-membrane topology structures of the BicA and SbtA HCO3 transporters are now known and this may aid in determining processes related to transporter activation during dark to light transitions or under severe Ci limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Badger MR (2003) The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth Res 77:83–94

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews TJ (1987) Co-evolution of Rubisco and CO2 concentrating mechanisms. In: Biggins J (ed) Progress in photosynthesis research: proceedings of the VIIth international congress on photosynthesis, Providence, RI, 10–15 August 1986. M. Nijhoff Publishers, Dordrecht, pp 601–609

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science 249:1382–1386

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    Article  CAS  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, von Wobeser EA, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HCP, Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Espie GS, Miller AG, Canvin DT (1991) High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 97:943–953

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere—integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Folea IM, Zhang P, Nowaczyk MM, Ogawa T, Aro EM, Boekema EJ (2008) Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803: localization of the CupA subunit of NDH-1. FEBS Lett 582:246–251

    Google Scholar 

  • Fridlyand L, Kaplan A, Reinhold L (1996) Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism. Biosystems 37:229–238

    Article  PubMed  CAS  Google Scholar 

  • Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J (1989) The 5′-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphoshate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC7942 at the level of CO2 in air. J Bacteriol 171:6069–6076

    PubMed  CAS  Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89:4437–4441

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Herranen M, Battchikova N, Zhang PP, Graf A, Sirpio S, Paakkarinen V, Aro EM (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134:470–481

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648

    PubMed  CAS  Google Scholar 

  • Hisbergues M, Jeanjean R, Joset F, de Marsac NT, Bedu S (1999) Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett 463:216–220

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Zenvirth D, Marcus Y, Omata T, Ogawa T (1987) Energization and activation of inorganic carbon uptake by light in cyanobacteria. Plant Physiol 84:210–213

    Article  PubMed  CAS  Google Scholar 

  • Klughammer B, Sultemeyer D, Badger MR, Price GD (1999) The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol 32:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Ko SBH, Zeng WZ, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6:343–350

    Article  PubMed  CAS  Google Scholar 

  • Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ (2007) The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 282:2606–2614

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47

    Article  Google Scholar 

  • Liu HB, Landry MR, Vaulot D, Campbell L (1999) Prochlorococcus growth rates in the central equatorial Pacific: an application of the f(max) approach. J Geophys Res Oceans 104:3391–3399

    Article  Google Scholar 

  • Maeda SI, Omata T (1997) Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in the transport of nitrate and nitrite. J Biol Chem 272:3036–3041

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Price GD, Badger MR, Enomoto C, Omata T (2000) Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 275:20551–20555

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43:425–435

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Price GD, Maleszka R, Badger MR (2003) Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC6803. Plant Physiol 132:218–229

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Price GD, Badger MR (2004) High light enhances the expression of low-CO2-inducible transcripts involved in the CO2-concentrating mechanism in Synechocystis sp. PCC6803. Plant Cell Environ 27:615–626

    Article  CAS  Google Scholar 

  • McGinn PJ, Jones MJ, Macdonald AB, Campbell DA (2005) Light is required for low-CO2-mediated induction of transcripts encoding components of the CO2-concentrating mechanism in the cyanobacterium Synechococcus elongatus: analysis by quantitative reverse transcription-polymerase chain reaction. Can J Bot 83:711–720

    Article  CAS  Google Scholar 

  • Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda SI, Omata T (2008) Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 68:98–109

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Pakrasi HB, Ogawa T (2000a) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem 275:31630–31634

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Price GD, Badger MR, Ogawa T (2000b) Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3 uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 182:2591–2596

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci USA 96:13571–13576

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Takahashi Y, Yamaguchi O, Nishimura T (2002) Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. Funct Plant Biol 29:151–159

    Article  CAS  Google Scholar 

  • Osanai T, Tanaka K (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol 48:908–914

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X-G, Price GD, Condon AG, Furbank R (2011) Raising yield potential of wheat: increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    Article  PubMed  CAS  Google Scholar 

  • Pena KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR (1989a) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR (1989b) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942. Two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol 91:514–525

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:784–793

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains—a review of general physiological characteristics, genes, proteins, and recent advances. Can J Bot 76:973–1002

    CAS  Google Scholar 

  • Price GD, Maeda S, Omata T, Badger MR (2002) Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101:18228–18233

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  PubMed  CAS  Google Scholar 

  • Prommeenate P, Lennon AM, Markert C, Hippler M, Nixon PJ (2004) Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803—identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279:28165–28173

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol 38:47–53

    Article  Google Scholar 

  • Raven JA, Lucas WJ (1985) The energetics of carbon acquisition. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, MD, pp 305–324

    Google Scholar 

  • Raven JA, Giordano M, Beardall J (2008) Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiol Plant 133:4–14

    Article  PubMed  CAS  Google Scholar 

  • Reinhold L, Zviman M, Kaplan A (1987) Inorganic carbon fluxes and photosynthesis in cyanobacteria–a quantitative model. In: Biggins J (ed) Progress in photosynthesis research: proceedings of the VIIth international congress on photosynthesis, Providence, RI, 10–15 August 1986, vol 4. M. Nijhoff Publishers, Dordrecht, pp 289–296

  • Reinhold L, Kosloff R, Kaplan A (1991) A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can J Bot 69:984–988

    Article  CAS  Google Scholar 

  • Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27:12–23

    Article  PubMed  Google Scholar 

  • Shibagaki N, Grossman AR (2004) Probing the function of STAS domains of the Arabidopsis sulfate transporters. J Biol Chem 279:30791–30799

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria—function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  PubMed  CAS  Google Scholar 

  • So AKC, Van Spall HGC, Coleman JR, Espie GS (1998) Catalytic exchange of 18O from 13C18O-labelled CO2 by wild-type cells and ecaA, ecaB, and ccaA mutants of the cyanobacteria Synechococcus PCC7942 and Synechocystis PCC6803. Can J Bot 76:1153–1160

    CAS  Google Scholar 

  • So AKC, John-McKay M, Espie GS (2002) Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Planta 214:456–467

    Article  PubMed  CAS  Google Scholar 

  • So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T (1998) Photosynthetic electron transport involved in pxcA-dependent proton extrusion in Synechocystis sp. strain PCC6803—effect of pxcA inactivation on CO2, HCO3 , and NO3 uptake. J Bacteriol 180:3799–3803

    PubMed  CAS  Google Scholar 

  • Sültemeyer D, Price GD, Yu JW, Badger MR (1995) Characterisation of carbon dioxide and bicarbonate transport during steady-state photosynthesis in the marine cyanobacterium Synechococcus strain PCC7002. Planta 197:597–607

    Article  Google Scholar 

  • Sültemeyer D, Klughammer B, Ludwig M, Badger MR, Price GD (1997) Random insertional mutagenesis used in the generation of mutants of the marine cyanobacterium Synechococcus sp. strain PCC7002 with an impaired CO2 concentrating mechanism. Aust J Plant Physiol 24:317–327

    Article  Google Scholar 

  • Sültemeyer D, Klughammer B, Badger MR, Price GD (1998a) Fast induction of high-affinity HCO3 transport in cyanobacteria. Plant Physiol 116:183–192

    Article  Google Scholar 

  • Sültemeyer D, Klughammer B, Badger MR, Price GD (1998b) Protein phosphorylation and its possible involvement in the induction of the high-affinity CO2 concentrating mechanism in cyanobacteria. Can J Bot 76:954–961

    Google Scholar 

  • Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective [Review]. Photosynth Res 60:1–28

    Article  CAS  Google Scholar 

  • Volokita M, Zenvirth D, Kaplan A, Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76:599–602

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts encoding components of the CO2—concentrating mechanism is Synechococcus sp. PCC7942 through a redox-independent pathway. Plant Physiol 133:2069–2080

    Article  PubMed  CAS  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2005a) Regulation of cyanobacterial CO2-concentrating mechanisms through transcriptional induction of high-affinity Ci-transport systems. Can J Bot 83:698–710

    Article  CAS  Google Scholar 

  • Woodger FJ, Badger MR, Price GD (2005b) Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiol 139:1959–1969

    Article  PubMed  CAS  Google Scholar 

  • Woodger FJ, Bryant DA, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    Article  PubMed  CAS  Google Scholar 

  • Yu JW, Price GD, Song L, Badger MR (1992) Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiol 100:794–800

    Article  PubMed  CAS  Google Scholar 

  • Zhang PP, Battchikova N, Jansen T, Appel J, Ogawa T, Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 16:3326–3340

    Article  PubMed  CAS  Google Scholar 

  • Zhang PP, Sicora CI, Vorontsova N, Allahverdlyeva Y, Battchikova N, Nixon PJ, Aro EM (2007) FtsH protease is required for induction of inorganic carbon acquisition complexes in Synechocystis sp. PCC 6803. Mol Microbiol 65:728–740

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dean Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, G.D. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109, 47–57 (2011). https://doi.org/10.1007/s11120-010-9608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9608-y

Keywords

Navigation