Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 75))

Abstract

Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported.

Susan C. Frost and Robert McKenna (eds.). Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alterio V, Di Fiore A, D’Ambrosio K et al (2012) Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms ? Chem Rev 112:4421–4468

    Article  PubMed  CAS  Google Scholar 

  2. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Article  PubMed  CAS  Google Scholar 

  3. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  PubMed  CAS  Google Scholar 

  4. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    Article  PubMed  CAS  Google Scholar 

  5. Supuran CT (2010) Carbonic anhydrase inhibitors. Bioorg Med Chem Lett 20:3467–3474

    Article  PubMed  CAS  Google Scholar 

  6. Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19:199–229

    Article  PubMed  CAS  Google Scholar 

  7. Supuran CT (2011) Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 3:1165–1180

    Article  PubMed  CAS  Google Scholar 

  8. Supuran CT (2011) Bacterial carbonic anhydrases as drug targets: towards novel antibiotics ? Front Pharmacol 2:34

    Article  PubMed  Google Scholar 

  9. Supuran CT, Scozzafava A, Casini A (2003) Carbonic anhydrase inhibitors. Med Res Rev 23:146–189

    Article  PubMed  CAS  Google Scholar 

  10. Domsic JF, Avvaru BS, Kim CU et al (2008) Entrapment of carbon dioxide in the active site of carbonic anhydrase II. J Biol Chem 283:30766–30771

    Article  PubMed  CAS  Google Scholar 

  11. De Simone G, Supuran CT (2012) (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 11:117–129

    Article  Google Scholar 

  12. Supuran CT (2012) Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 27:759–772

    Article  PubMed  CAS  Google Scholar 

  13. Suarez Covarrubias A, Bergfors T, Jones TA, Hogbom M (2006) Structural mechanics of the pH-dependent activity of the β-carbonic anhydrase from Mycobacterium tuberculosis. J Biol Chem 281:4993–4999

    Article  CAS  Google Scholar 

  14. Temperini C, Scozzafava A, Supuran CT (2010) Carbonic anhydrase inhibitors. X-Ray crystal studies of the carbonic anhydrase II – trithiocarbonate adduct – An inhibitor mimicking the sulfonamide and urea binding to the enzyme. Bioorg Med Chem Lett 20:474–478

    Article  PubMed  CAS  Google Scholar 

  15. Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT (1997) Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 36:10384–11039

    Article  PubMed  CAS  Google Scholar 

  16. Temperini C, Scozzafava A, Vullo D, Supuran CT (2006) Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII and XIV with L- and D-histidine and crystallographic analysis of their adducts with isoform II: engineering proton transfer processes within the active site of an enzyme. Chemistry 12:7057–7066

    Article  PubMed  CAS  Google Scholar 

  17. Maupin CM, Castillo N, Taraphder S, Tu C, McKenna R, Silverman DN, Voth GA (2011) Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. J Am Chem Soc 133:6223–6234

    Article  PubMed  CAS  Google Scholar 

  18. Carta F, Temperini C, Innocenti A, Scozzafava A, Kaila K, Supuran CT (2010) Polyamines inhibit carbonic anhydrases by anchoring to the zinc-coordinated water molecule. J Med Chem 53:5511–5522

    Article  PubMed  CAS  Google Scholar 

  19. Maresca A, Temperini C, Vu H, Pham NB, Poulsen SA, Scozzafava A, Quinn RJ, Supuran CT (2009) Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 131:3057–3062

    Article  PubMed  CAS  Google Scholar 

  20. Maresca A, Temperini C, Pochet L, Masereel B, Scozzafava A, Supuran CT (2010) Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 53:335–344

    Article  PubMed  CAS  Google Scholar 

  21. Touisni N, Maresca A, McDonald PC, Lou Y, Scozzafava A, Dedhar S, Winum JY, Supuran CT (2011) Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 54:8271–8277

    Article  PubMed  CAS  Google Scholar 

  22. Woo LW, Ganeshapillai D, Thomas MP, Sutcliffe OB, Malini B, Mahon MF, Purohit A, Potter BV (2011) Structure-activity relationship for the first-in-class clinical steroid sulfatase inhibitor Irosustat (STX64, BN83495). ChemMedChem 6:2019–2034

    Article  PubMed  CAS  Google Scholar 

  23. Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350

    Article  PubMed  CAS  Google Scholar 

  24. Baranauskienė L, Hilvo M, Matulienė J, Golovenko D, Manakova E, Dudutienė V, Michailovienė V, Torresan J, Jachno J, Parkkila S, Maresca A, Supuran CT, Gražulis S, Matulis D (2010) Inhibition and binding studies of carbonic anhydrase isozymes I, II and IX with benzimidazo(1,2-c)(1,2,3)thiadiazole-7-sulphonamides. J Enzyme Inhib Med Chem 25:863–870

    Article  PubMed  Google Scholar 

  25. Zimmerman S, Innocenti A, Casini A, Ferry JG, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors. Inhibition of the prokariotic beta and gamma-class enzymes from Archaea with sulfonamides. Bioorg Med Chem Lett 14:6001–6006

    Article  PubMed  CAS  Google Scholar 

  26. Schlicker C, Hall RA, Vullo D, Middelhaufe S, Gertz M, Supuran CT, Muhlschlegel FA, Steegborn C (2009) Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol 385:1207–2020

    Article  PubMed  CAS  Google Scholar 

  27. Pacchiano F, Carta F, Vullo D, Scozzafava A, Supuran CT (2010) Inhibition of β-carbonic anhydrases with ureido-substituted benzenesulfonamides. Bioorg Med Chem Lett 20:102–105

    Google Scholar 

  28. Alterio V, Hilvo M, Di Fiore A et al (2009) Crystal structure of the extracellular catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 106:16233–16238

    Article  PubMed  CAS  Google Scholar 

  29. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2 selective Celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557

    Article  PubMed  CAS  Google Scholar 

  30. Di Fiore A, Pedone C, D’Ambrosio K, Scozzafava A, De Simone G, Supuran CT (2006) Carbonic anhydrase inhibitors: valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related, cyclooxygenase II “selective” inhibitor celecoxib. Bioorg Med Chem Lett 16:437–442

    Article  PubMed  Google Scholar 

  31. Köhler K, Hillebrecht A, Schulze Wischeler J, Innocenti A, Heine A, Supuran CT, Klebe G (2007) Saccharin inhibits carbonic anhydrases: possible explanation for its unpleasant metallic aftertaste. Angew Chem Int Ed Engl 46:7697–7699

    Article  PubMed  Google Scholar 

  32. Hilvo M, Innocenti A, Monti SM, De Simone G, Supuran CT, Parkkila S (2008) Recent advances in research on the most novel carbonic anhydrases, CA XIII and XV. Curr Pharm Des 14:672–678

    Article  PubMed  CAS  Google Scholar 

  33. Di Fiore A, Monti SM, Hilvo M, Di Fiore A, Monti SM, Hilvo M, Parkkila S, Romano V, Scaloni A, Pedone C, Scozzafava A, Supuran CT, De Simone G (2009) Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Proteins 74:164–175

    Article  PubMed  Google Scholar 

  34. Di Fiore A, Truppo E, Supuran CT, Alterio V, Dathan N, Bootorabi F, Parkkila S, Monti SM, De Simone G (2010) Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide. Bioorg Med Chem Lett 20:5023–5026

    Article  PubMed  Google Scholar 

  35. Whittington DA, Waheed A, Ulmasov B et al (2001) Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc Natl Acad Sci U S A 98:9545–9550

    Article  PubMed  CAS  Google Scholar 

  36. Whittington DA, Grubb JH, Waheed A, Shah GN, Sly WS, Christianson DW (2004) Expression, assay, and structure of the extracellular domain of murine carbonic anhydrase XIV: implications for selective inhibition of membrane-associated isozymes. J Biol Chem 279:7223–7228

    Article  PubMed  Google Scholar 

  37. Casini A, Scozzafava A, Mincione F, Menabuoni L, Ilies MA, Supuran CT (2000) Carbonic anhydrase inhibitors: water-soluble 4-sulfamoylphenylthioureas as topical intraocular pressure-lowering agents with long-lasting effects. J Med Chem 43:4884–4892

    Article  PubMed  CAS  Google Scholar 

  38. Scozzafava A, Menabuoni L, Mincione F, Supuran CT (2002) Carbonic anhydrase inhibitors. A general approach for the preparation of water soluble sulfonamides incorporating polyamino-polycarboxylate tails and of their metal complexes possessing long lasting, topical intraocular pressure lowering properties. J Med Chem 45:1466–1476

    Article  PubMed  CAS  Google Scholar 

  39. Fabrizi F, Mincione F, Somma T, Scozzafava G, Galassi F, Masini E, Impagnatiello F, Supuran CT (2012) A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 27:138–147

    Article  PubMed  CAS  Google Scholar 

  40. Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A (2009) Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem 24(S1):1–39

    Article  PubMed  CAS  Google Scholar 

  41. Švastová E, Hulíková A, Rafajová M, Zat'ovicová M, Gibadulinová A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastoreková S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    Article  PubMed  Google Scholar 

  42. Dubois L, Lieuwes NG, Maresca A et al (2009) Imaging of CA IX with fluorescent labelled sulfonamides distinguishes hypoxic and (re)-oxygenated cells in a xenograft tumor model. Radiother Oncol 92:423–428

    Article  PubMed  CAS  Google Scholar 

  43. Ahlskog JKJ, Dumelin CE, Trüssel S, Marlind J, Neri D (2009) In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg Med Chem Lett 19:4851–4856

    Article  PubMed  CAS  Google Scholar 

  44. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf dem Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW, Waterhouse D, Bally M, Roskelley C, Overall CM, Minchinton A, Pacchiano F, Carta F, Scozzafava A, Touisni N, Winum JY, Supuran CT, Dedhar S (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    Article  PubMed  CAS  Google Scholar 

  45. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, Dedhar S, Supuran CT (2011) Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 54:1896–1902

    Article  PubMed  CAS  Google Scholar 

  46. Mincione F, Scozzafava A, Supuran CT (2007) The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr Top Med Chem 7:849–854

    Article  PubMed  CAS  Google Scholar 

  47. Carta F, Supuran CT, Scozzafava A (2012) Novel therapies for glaucoma: a patent review 2007–2011. Expert Opin Ther Pat 22:79–88

    Article  PubMed  CAS  Google Scholar 

  48. Steele RM, Batugo MR, Benedini F, Borghi V, Carzaniga L, Impagnatiello F, Miglietta D, Chong WK, Rajapakse R, Cecchi A, Temperini C, Supuran CT (2009) Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma. Bioorg Med Chem Lett 19:6565–6570

    Article  PubMed  CAS  Google Scholar 

  49. Mincione F, Benedini F, Biondi S, Mincione F, Benedini F, Biondi S, Cecchi A, Temperini C, Formicola G, Pacileo I, Scozzafava A, Masini E, Supuran CT (2011) Synthesis and crystallographic analysis of new sulfonamides incorporating NO-donating moieties with potent antiglaucoma action. Bioorg Med Chem Lett 21:3216–3221

    Article  PubMed  CAS  Google Scholar 

  50. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G (2009) X-Ray crystallography of CA inhibitors and its importance in drug design. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 73–138

    Google Scholar 

  51. Alterio V, Vitale RM, Monti SM, Pedone C, Scozzafava A, Cecchi A, De Simone G, Supuran CT (2006) Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of a fluorescent antitumor sulfonamide with isozyme II and IX. J Am Chem Soc 128:8329–8335

    Article  PubMed  CAS  Google Scholar 

  52. Alterio V, De Simone G, Monti SM, Scozzafava A, Supuran CT (2007) Carbonic anhydrase inhibitors: inhibition of human, bacterial, and archaeal isozymes with benzene-1,3-disulfonamides-solution and crystallographic studies. Bioorg Med Chem Lett 17:4201–4207

    Article  PubMed  CAS  Google Scholar 

  53. Wagner J, Avvaru BS, Robbins AH, Scozzafava A, Supuran CT, McKenna R (2010) Coumarinyl-substituted sulfonamides strongly inhibit several human carbonic anhydrase isoforms: solution and crystallographic investigations. Bioorg Med Chem 18:4873–4878

    Article  PubMed  CAS  Google Scholar 

  54. Biswas S, Aggarwal M, Guzel O, Scozzafava A, McKenna R, Supuran CT (2011) Conformational variability of different sulfonamide inhibitors with thienyl-acetamido moieties attributes to differential binding in the active site of cytosolic human carbonic anhydrase isoforms. Bioorg Med Chem 19:3732–3738

    Article  PubMed  CAS  Google Scholar 

  55. Pacchiano F, Aggarwal M, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, Supuran CT (2010) Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun 46:8371–8373

    Article  CAS  Google Scholar 

  56. Carta F, Garaj V, Maresca A, Wagner J, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, Supuran CT (2011) Sulfonamides incorporating 1,3,5-triazine moieties selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII and XIV over cytosolic isoforms I and II: solution and X-ray crystallographic studies. Bioorg Med Chem 19:3105–3119

    Article  PubMed  CAS  Google Scholar 

  57. Hen N, Bialer M, Yagen B, Aggarwal M, Robbins AH, McKenna R, Scozzafava A, Supuran CT (2011) Anticonvulsant 4-aminobenzenesulfonamide derivatives with branched-alkylamide moieties: X-ray crystallography and inhibition studies of human carbonic anhydrase isoforms I, II, VII and XIV. J Med Chem 54:3977–3981

    Article  PubMed  CAS  Google Scholar 

  58. Kolayli S, Karahalil F, Sahin H, Dincer B, Supuran CT (2011) Characterization and inhibition studies of an α-carbonic anhydrase from the endangered sturgeon species Acipenser gueldenstaedti. J Enzyme Inhib Med Chem 26:895–900

    Article  PubMed  CAS  Google Scholar 

  59. Carta F, Aggarwal M, Maresca A, Scozzafava A, McKenna R, Supuran CT (2012) Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Commun 48:1868–1870

    Article  CAS  Google Scholar 

  60. Güzel Ö, Innocenti A, Scozzafava A, Salman A, Supuran CT (2009) Carbonic anhydrase inhibitors. Phenacetyl-, pyridylacetyl- and thienylacetyl-substituted aromatic sulfonamides act as potent and selective isoform VII inhibitors. Bioorg Med Chem Lett 19:3170–3173

    Article  PubMed  Google Scholar 

  61. Güzel Ö, Innocenti A, Scozzafava A, Salman A, Supuran CT (2009) Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl-, pyridylacetyl- and thienylacetyl- tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Bioorg Med Chem 17:4894–4899

    Article  PubMed  Google Scholar 

  62. Scozzafava A, Supuran CT (1999) Carbonic anhydrase inhibitors. Arylsulfonylureido and arylureido-substituted aromatic and heterocyclic sulfonamides: towards selective inhibitors of carbonic anhydrase isozyme I. J Enzyme Inhib 14:343–363

    Article  PubMed  CAS  Google Scholar 

  63. Garaj V, Puccetti L, Fasolis G, Winum JY, Montero JL, Scozzafava A, Vullo D, Innocenti A, Supuran CT (2004) Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg Med Chem Lett 14:5427–5433

    Article  PubMed  CAS  Google Scholar 

  64. Garaj V, Puccetti L, Fasolis G, Winum JY, Montero JL, Scozzafava A, Vullo D, Innocenti A, Supuran CT (2005) Carbonic anhydrase inhibitors. Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumor-associated carbonic anhydrase isozymes I, II and IX. Bioorg Med Chem Lett 15:3102–3108

    Article  PubMed  CAS  Google Scholar 

  65. McDonald PC, Winum JY, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3:84–97

    PubMed  Google Scholar 

  66. Carta F, Aggarwal M, Maresca A, Scozzafava A, McKenna R, Masini E, Supuran CT (2012) Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 55:1721–1730

    Article  PubMed  CAS  Google Scholar 

  67. Monti SM, Maresca A, Viparelli F, Carta F, De Simone G, Mühlschlegel FA, Scozzafava A, Supuran CT (2012) Dithiocarbamates strongly inhibit the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata. Bioorg Med Chem Lett 22:859–862

    Article  PubMed  CAS  Google Scholar 

  68. Maresca A, Carta F, Vullo D, Supuran CT (2013) Dithiocarbamates strongly inhibit the beta-class carbonic anhydrases from Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 28 (in press)

    Google Scholar 

  69. Hall RA, Mühlschlegel FA (2009) Fungal and nematode carbonic anhydrases: their inhibition in drug design. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 301–322

    Chapter  Google Scholar 

  70. Ohndorf UM, Schlicker C, Steegborn C (2009) Crystallographic studies on carbonic anhydrases from fungal pathogens for structure-assisted drug development. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 323–334

    Chapter  Google Scholar 

  71. Carta F, Innocenti A, Hall RA, Mühlschlegel FA, Scozzafava A, Supuran CT (2011) Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with branched aliphatic-/aromatic carboxylates and their derivatives. Bioorg Med Chem Lett 21:2521–2526

    Article  PubMed  CAS  Google Scholar 

  72. Nishimori I, Onishi S, Takeuchi H, Supuran CT (2008) The α and β classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 14:622–630

    Article  PubMed  CAS  Google Scholar 

  73. Minakuchi T, Nishimori I, Vullo D, Scozzafava A, Supuran CT (2009) Molecular cloning, characterization and inhibition studies of the Rv1284 β-carbonic anhydrase from Mycobacterium tuberculosis with sulfonamides and a sulfamate. J Med Chem 52:2226–2232

    Article  PubMed  CAS  Google Scholar 

  74. Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Innocenti A, Supuran CT (2009) Carbonic anhydrase inhibitors. cloning, characterization, and inhibition studies of a new β-carbonic anhydrase from Mycobacterium tuberculosis. J Med Chem 52:3116–3120

    Article  PubMed  CAS  Google Scholar 

  75. Güzel Ö, Maresca A, Scozzafava A, Salman A, Balaban AT, Supuran CT (2009) Discovery of low nanomolar and subnanomolar inhibitors of the mycobacterial β-carbonic anhydrases Rv1284 and Rv3273. J Med Chem 52:4063–4067

    Article  PubMed  Google Scholar 

  76. Carta F, Maresca A, Suarez Covarrubias A, Mowbray SL, Jones TA, Supuran CT (2009) Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active β-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c. Bioorg Med Chem Lett 19:6649–6654

    Article  PubMed  CAS  Google Scholar 

  77. Nishimori I, Minakuchi T, Maresca A, Carta F, Scozzafava A, Supuran CT (2010) The β-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr Pharm Des 16:3300–3309

    Article  PubMed  CAS  Google Scholar 

  78. Winum JY, Kohler S, Supuran CT (2010) Brucella carbonic anhydrases: new targets for designing anti-infective agents. Curr Pharm Des 16:3310–3316

    Article  PubMed  CAS  Google Scholar 

  79. Vullo D, Nishimori I, Minakuchi T, Scozzafava A, Supuran CT (2011) Inhibition studies with anions and small molecules of two novel β-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium. Bioorg Med Chem Lett 21:3591–3595

    Article  PubMed  CAS  Google Scholar 

  80. Cronk JD, Endrizzi JA, Cronk MR, O'Neill JW, Zhang K (2001) Crystal structure of E. coli b-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci 10:911–922

    Article  PubMed  CAS  Google Scholar 

  81. Cronk JD, Rowlett RS, Zhang KY, Tu C, Endrizzi JA, Lee J, Gareiss PC, Preiss JR (2006) Identification of a novel noncatalytic bicarbonate binding site in eubacterial β-carbonic anhydrase. Biochemistry 45:4351–4361

    Article  PubMed  CAS  Google Scholar 

  82. Maresca A, Vullo D, Scozzafava A, Supuran CT (2013) Inhibition of the alpha- and beta- carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions. J Enzyme Inhib Med Chem 28:388–891

    Article  PubMed  Google Scholar 

  83. Maresca A, Vullo D, Scozzafava A, Manole G, Supuran CT (2013) Inhibition of the beta-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids. J Enzyme Inhib Med Chem 28 (in press)

    Google Scholar 

  84. Vullo D, Nishimori I, Scozzafava A, Köhler S, Winum JY, Supuran CT (2010) Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett 20:2178–2182

    Article  PubMed  CAS  Google Scholar 

  85. Nishimori I, Minakuchi T, Kohsaki T, Onishi S, Takeuchi H, Vullo D, Scozzafava A, Supuran CT (2007) Carbonic anhydrase inhibitors. The β-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg Med Chem Lett 17:3585–3594

    Article  PubMed  CAS  Google Scholar 

  86. Del Prete S, Isik S, Vullo D, De Luca V, Carginale V, Scozzafava A, Supuran CT, Capasso C (2012) DNA cloning, characterization and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. J Med Chem 55:10742–10748

    Article  PubMed  Google Scholar 

  87. Buchieri MV, Riafrecha LE, Rodríguez OM, Vullo D, Morbidoni HR, Supuran CT, Colinas PA (2013) Inhibition of the β-carbonic anhydrases from Mycobacterium tuberculosis with C-cinnamoyl glycosides: identification of the first inhibitor with antimycobacterial activity. Bioorg Med Chem Lett 23 (in press)

    Google Scholar 

  88. Nair SK, Ludwig PA, Christianson DW (1994) Two-site binding of phenol in the active site of human carbonic anhydrase II: structural implications for substrate association. J Am Chem Soc 116:3659–3660

    Article  CAS  Google Scholar 

  89. Innocenti A, Vullo D, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Interactions of phenols with the 12 catalytically active mammalian isoforms (CA I – XIV). Bioorg Med Chem Lett 18:1583–1587

    Article  PubMed  CAS  Google Scholar 

  90. Innocenti A, Hilvo M, Scozzafava A, Parkkila S, Supuran CT (2008) Carbonic anhydrase inhibitors. Inhibition of the new membrane-associated isoform XV with phenols. Bioorg Med Chem Lett 18:3593–3596

    Article  PubMed  CAS  Google Scholar 

  91. Innocenti A, Vullo D, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I – XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem 16:7424–7428

    Article  PubMed  CAS  Google Scholar 

  92. Bayram E, Senturk M, Kufrevioglu OI, Supuran CT (2008) In vitro effects of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II. Bioorg Med Chem 16:9101–9105

    Article  PubMed  CAS  Google Scholar 

  93. Carta F, Vullo D, Maresca A, Scozzafava A, Supuran CT (2013) Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV. Bioorg Med Chem 21 (in press)

    Google Scholar 

  94. Martin DP, Cohen SM (2012) Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors. Chem Commun 48:5259–5261

    Article  CAS  Google Scholar 

  95. Carta F, Maresca A, Scozzafava A, Supuran CT (2012) Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 20:2266–2273

    Article  PubMed  CAS  Google Scholar 

  96. Carta F, Vullo D, Maresca A, Scozzafava A, Supuran CT (2012) New chemotypes acting as isozyme-selective carbonic anhydrase inhibitors with low affinity for the offtarget cytosolic isoform II. Bioorg Med Chem Lett 22:2182–2185

    Article  PubMed  CAS  Google Scholar 

  97. Maresca A, Supuran CT (2010) Coumarins incorporating hydroxy- and chloro- moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 20:4511–4514

    Article  PubMed  CAS  Google Scholar 

  98. Maresca A, Scozzafava A, Supuran CT (2010) 7,8-Disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 20:7255–7258

    Article  PubMed  CAS  Google Scholar 

  99. Davis RA, Vullo D, Maresca A, Supuran CT, Poulsen SA (2013) Natural product coumarins that inhibit human carbonic anhydrases. Bioorg Med Chem 21:1539–1543

    Article  PubMed  CAS  Google Scholar 

  100. Carta F, Maresca A, Scozzafava A, Supuran CT (2012) 5- and 6-Membered (thio)lactones are prodrug type carbonic anhydrase inhibitors. Bioorg Med Chem Lett 22:267–270

    Article  PubMed  CAS  Google Scholar 

  101. Tars K, Vullo D, Kazaks A, Leitans J, Lends A, Grandane A, Zalubovskis R, Scozzafava A, Supuran CT (2013) Sulfocoumarins (1,2-benzoxathiine 2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 56:293–300

    Article  PubMed  CAS  Google Scholar 

  102. Aggarwal M, Boone CD, Kondeti B, McKenna R (2013) Structural annotations of human carbonic anhydrases. J Enzyme Inhib Med Chem 28:267–277

    Article  PubMed  Google Scholar 

  103. Aggarwal M, Kondeti B, McKenna R (2013) Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Bioorg Med Chem 21:1526–1533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research from C. T. S. laboratory was financed by several grants of the 6th and 7th Framework Programs of the European Union (DeZnIT, Metoxia and Dynano projects) and from R. M. laboratory by a grant from the NIH (GM25154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu T. Supuran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McKenna, R., Supuran, C.T. (2014). Carbonic Anhydrase Inhibitors Drug Design. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7359-2_15

Download citation

Publish with us

Policies and ethics