Skip to main content

Advertisement

Log in

Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity

  • Original Paper
  • Published:
Photosynthetica

Abstract

Increase in salinity is predicted to affect plant growth and survival in most arid and semiarid regions worldwide. Mitragyna parvifolia (Roxb.) Korth. is an important medicinal tree species distributed throughout the semiarid regions of India; however, it is facing a threat of its extinction in its natural habitat. We examined the effects of increasing NaCl salinity on two-month-old M. parvifolia seedlings grown in an environment-controlled chamber and exposed to soils of different electrical conductivity (EC) caused by NaCl [0–5 (control), 5–10, 10–15, 15–20, and 20–25 dS m−1)] for 85 days. Seedlings transferred to soil of EC >15 dS m−1 did not survive beyond 1 week. Increase in the Na+ concentration negatively correlated with their height and positively correlated with their water-use efficiency (WUE). However, leaf area, net photosynthetic rate (P N), stomatal conductance, and transpiration rate showed varying correlations and an overall decrease in these parameters compared with the control. At EC of 10–15 dS m−1, the seedling height was reduced by 37% and P N was lowered by 50% compared with those of the control. An increase in the Na+/K+ ratio was observed with increasing salinity. The maximum quantum efficiency of PSII significantly decreased with increasing salinity compared with the control. Our results suggest that the increase in salinity reduced the overall performance of the M. parvifolia seedlings. However, the maintenance of WUE and maximum quantum efficiency of PSII might help M. parvifolia to tolerate NaCl salinity of 15 dS m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

E :

transpiration rate

Fo :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

S1:

0–5 dS m−1 NaCl (control)

S2:

5–10 dS m−1

S3:

10–15 dS m−1

S4:

15–20 dS m−1

S5:

20–25 dS m−1

LA:

leaf area

P N :

net photosynthetic rate

WUE:

water-use efficiency (= P N/E)

References

  • Aitken S.N., Yeaman, S., Holliday J.A. et al.: Adaptation, migration or extirpation: climate change outcomes for tree populations. — Evol. Appl. 1: 95–111, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen S.E., Davison W., Grimshaw H. et al.: Chemical Analysis of Ecological Materials. Pp. 46–60. Blackwell Sci. Publ., Oxford 1974.

    Google Scholar 

  • Ashraf M.: Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. — J. Exp. Bot. 45: 155–163, 2001.

    Article  CAS  Google Scholar 

  • Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Bates B., Kundzewicz Z.W., Wu S. et al.: Climate change and water. Pp. 103. Intergovernmental Panel on Climate Change (IPCC), Geneva 2008.

    Google Scholar 

  • Belkhodja R., Morales F., Abadia A. et al.: Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). — Plant Physiol. 104: 667–673, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert H.J.: Abiotic stress. — In: Hetherington A.M. (ed.): Encyclopedia of Life Sciences. Pp. 1–9. John Wiley & Sons Ltd, London 2007.

    Google Scholar 

  • Borsani O., Valpuesta V., Botella M.: Developing salt tolerant plants in a new century: a molecular biology approach. — Plant Cell Tiss. Org. 73: 101–115, 2003.

    Article  CAS  Google Scholar 

  • Briantais J.M., Vernotte C., Krause G.H.: Chlorophyll a fluorescence of higher plants: chloroplast and leaves. — In: Govindjee, Amesz J., Fork D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 539–583. Academic Press, Orlando 1986.

    Chapter  Google Scholar 

  • Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot.-London 103: 551–560, 2009.

    Article  CAS  Google Scholar 

  • Chelli-Chaabouni A., Mosbah A.B., Maalej M. et al.: In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. — Environ. Exp. Bot. 69: 302–312, 2010.

    Article  CAS  Google Scholar 

  • Cramer G., Alberico G., Schmidt C.: Leaf expansion limits dry matter accumulation of salt-stressed maize. — Funct. Plant Biol. 21: 663–674, 1994.

    CAS  Google Scholar 

  • Curtis P.S., Läuchli A.: The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (kenaf) and its relation to leaf area. — Am. J. Bot. 74: 538–542, 1987.

    Article  CAS  Google Scholar 

  • Debez A., Koyro H., Grignon C. et al.: Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. — Physiol. Plantarum 133: 373–385, 2008.

    Article  CAS  Google Scholar 

  • Díaz-López L., Gimeno V., Lidón V. et al.: The tolerance of Jatropha curcas seedlings to NaCl: An ecophysiological analysis. — Plant Physiol. Bioch. 54: 34–42, 2012.

    Article  Google Scholar 

  • Ebert G., Casierra-Posada F., Lüdders P.: Influence of NaCl salinity on growth and mineral uptake of lulo (Solanum quitoense L.). — Angew. Bot. 73: 31–33, 1999.

    CAS  Google Scholar 

  • Ebert G.: Growth, ion uptake and gas exchange of two Annona species under salt stress. — J. Appl. Bot. 72, 61–65, 1998.

    CAS  Google Scholar 

  • Fang S.Z., Song L.Y., Fu X.X.: Effects of NaCl stress on seed germination, leaf gas exchange and seedling growth of Pteroceltis tatarinowii. — J. Forest. Res. 17: 185–188, 2006.

    Article  CAS  Google Scholar 

  • Garg B.K., Gupta I.C.: Salinity Tolerance in Plants: Methods, Mechanisms and Management. Pp. 159–196. Sci. Publ., Jodhpur, 2011.

    Google Scholar 

  • Govindjee.: Chlorophyll a fluorescence: A bit of basics and history. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 2–42. Springer, Dordrecht 2004.

    Google Scholar 

  • Greenway H., Munns R.: Mechanisms of salt tolerance in nonhalophytes. — Annu. Rev. Plant Physio. 31: 149–190, 1980.

    Article  CAS  Google Scholar 

  • Hamamoto S., Horie T., Hauser F. et al.: HKT transporters mediate salt stress resistance in plants: from structure and function to the field. — Curr. Opin. Chem. Biol. 32: 113–120, 2015.

    Article  CAS  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J.K. et al.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant Physiol. 51: 463–499, 2000.

    Article  CAS  Google Scholar 

  • Houle G., Morel L., Reynolds C.E. et al.: Effect of salinity on different developmental stages of an endemic annual plant Aster laurentianus (Asteraceae). — Am. J. Bot. 88: 62–67, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Imada S., Yamanaka N., Tamai S.: Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. — J. Arid Environ. 73: 245–251, 2009

    Article  Google Scholar 

  • Iwanaga F., Yamamoto F.: Growth, morphology and photosynthetic activity in flooded Alnus japonica seedlings. — J. Forest. Res. 12: 243–246, 2007.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Govindjee., Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. — Environ. Exp. Bot. 73: 64–72, 2011.

    Article  CAS  Google Scholar 

  • Khan M.A., Ungar I.A.: The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. — Am. J. Bot. 71: 481–489, 1984.

    Article  Google Scholar 

  • Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). — Environ. Exp. Bot. 56: 136–146, 2006.

    Article  CAS  Google Scholar 

  • Kozlowski T.T.: Responses of woody plants to flooding and salinity. — Tree Physiol. Monogr. 1: 1–29, 1997.

    Google Scholar 

  • Li J., Zhao C., Li J. et al.: Growth and leaf gas exchange in Populus euphratica across soil water and salinity gradients. — Photosynthetica 51: 321–329, 2013.

    Article  CAS  Google Scholar 

  • Liu J., Guo W.Q., Shi D.C.: Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. — Photosynthetica 48: 278–286, 2010.

    Article  CAS  Google Scholar 

  • Long S., Baker N.: Saline terrestrial environments. — In: Baker N, Long S. (ed.): Photosynthesis in Contrasting Environments. Pp. 63–102, Elsevier, New York 1986.

    Google Scholar 

  • Lu C., Qiu N., Wang B. et al.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. — J. Exp. Bot. 54: 851–860, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y., Nakazawa R.: Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canary grass seedlings. — Biol. Plantarum 52: 153–156, 2008.

    Article  CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    CAS  PubMed  Google Scholar 

  • Meloni D.A., Oliva M.A., Martinez C.A. et al.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. — Environ. Exp. Bot. 49: 69–76, 2003.

    Article  CAS  Google Scholar 

  • Middleton B.A.: Vegetation status of the Keoladeo National Park, Bharatpur, Rajasthan, India (April 2009). US Geological Survey Science Investigation Report, 5193, 2009.

    Google Scholar 

  • Monneveux P., Mekkaoui M., Xu X.: Physiological basis of salt tolerance in wheat. Chlorophyll fluorescence as a new tool for screening tolerant genotypes. — Wheat Breeding Prospects and Future Approaches Conference Proceedings. Pp. 1–33. Toshevo 1990.

    Google Scholar 

  • Moradi F., Ismail A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. — Ann. Bot.-London 99: 1161–1173, 2007.

    Article  CAS  Google Scholar 

  • Morais M.C., Panuccio M.R., Muscolo A. et al.: Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. — Plant Physiol. Bioch. 55: 60–65, 2012.

    Article  CAS  Google Scholar 

  • Munns R., Termaat A.: Whole-plant responses to salinity. — Aust. J. Plant. Physiol. 13: 143–160, 1986.

    Article  Google Scholar 

  • Munns R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. — J. Exp. Bot. 64: 3983–3998, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Musyimi D., Netondo G., Ouma G.: Effects of salinity on growth and photosynthesis of avocado seedlings. — Int. J. Bot. 3: 78–84, 2007.

    Article  CAS  Google Scholar 

  • Nandy P., Das S., Ghose M. et al.: Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. — Wetl. Ecol. Manage. 15: 347–357, 2007.

    Article  CAS  Google Scholar 

  • Navarro A., Bañon S., Olmos E. et al.: Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. — Plant Sci. 172: 473–480, 2007.

    Article  CAS  Google Scholar 

  • Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity. — Crop Sci. 44: 797–805, 2004.

    Article  CAS  Google Scholar 

  • Nguyen H.T., Stanton D.E., Schmitz N. et al.: Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. — Ann. Bot.-London 115: 397–407, 2015.

    Article  Google Scholar 

  • Niknam S.R., McComb J.: Salt tolerance screening of selected Australian woody species–a review. — Forest Ecol. Manage. 139: 1–19, 2000.

    Article  Google Scholar 

  • Niu X., Bressan R.A., Hasegawa P.M. et al.: Ion homeostasis in NaCl stress environments. — Plant Physiol. 109: 735–742, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar J., Tarafdar J.C.: Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.) Korth. in Thar Desert. — Appl. Soil Ecol. 34: 200–208, 2006.

    Article  Google Scholar 

  • Papageorgiou G.C., Govindjee.: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 818. Springer, Dordrecht 2004.

    Book  Google Scholar 

  • Papageorgiou G.C., Govindjee.: Photosystem II fluorescence: Slow changes–Scaling from the past. — J. Photoch. Photobio. B. 104: 258–270, 2011.

    Article  CAS  Google Scholar 

  • Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review. — Ecotoxicol. Environ. Safe. 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Patel A.D., Bhensdadia H., Pandey A.N.: Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). — Acta. Ecol. Sin. 29: 109–115, 2009.

    Article  Google Scholar 

  • Percival G.C., Fraser G.A., Oxenham G.: Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. — J. Arboric. 29: 61–65, 2003.

    Google Scholar 

  • Pessarakli M., Szabolcs I.: Soil salinity and sodicity as particular plant/crop stress factors. — In: Pessarakli M (ed.): Handbook of Plant and Crop Stress. Pp. 3–21. CRC Press, Boca Raton 2011.

    Google Scholar 

  • Pezeshki S., Chambers J.: Effect of soil salinity on stomatal conductance and photosynthesis of green ash (Fraxinus pennsylvanica). — Can. J. Forest Res. 16: 569–573, 1986.

    Article  Google Scholar 

  • Ramoliya P.J., Pandey A.N.: Effect of salinization of soil on emergence, growth and survival of seedlings of Cordia rothii. — Forest Ecol. Manage. 176: 185–194, 2003.

    Article  Google Scholar 

  • Sam O., Ramírez C., Coronado M. J. et al.: Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. — Biol. Plantarum 47: 361–366, 2003.

    Article  Google Scholar 

  • Schützendübel A., Polle A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. — J. Exp. Bot. 53: 1351–1365, 2002.

    PubMed  Google Scholar 

  • Sekmen A.H., Turkan I., Tanyolac Z.O. et al.: Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. — Environ. Exp. Bot. 77: 63–76, 2012.

    Article  CAS  Google Scholar 

  • Shankarnarayan K., Harsh L., Kathju S.: Agroforestry in the arid zones of India. — Agroforest. Syst. 5: 69–88, 1987.

    Article  Google Scholar 

  • Sinclair T.: Leaf area development in field-grown soybeans. — Agron. J. 76: 141–146, 1984.

    Article  Google Scholar 

  • Singh R., Agarwal R., Tiwari A.: Ecophysiological observations on Keoladeo National Park, Bharatpur (India). — J. Wetland. Ecol. 4: 43–68, 2011.

    Article  Google Scholar 

  • Stirbet A., Govindjee.: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. — J. Photoch. Photobio. B. 104: 236–257, 2011.

    Article  CAS  Google Scholar 

  • Sun J., Zou D.T., Luan F.S. et al.: Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. — Biol. Plantarum 58: 689–696, 2014.

    Article  CAS  Google Scholar 

  • Vicente O., Boscaiu M., Naranjo M.Á.: Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). — J. Arid Environ. 58: 463–481, 2004.

    Article  Google Scholar 

  • von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Wu Q., Zou Y.: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. — Not. Bot. Horti. Agrobo. 37: 133–138, 2009.

    Google Scholar 

  • Yang C., Jianaer A., Li C. et al.: Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. — Photosynthetica 46: 273–278, 2008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bidalia.

Additional information

Acknowledgments: We are grateful to Govindjee, Professor Emeritus of Biochemistry, Biophysics and Plant Biology, University of Illinois at Urbana-Champaign, for discussions and reading the earlier draft of our manuscript. We thank Dr. Chirashree Ghosh, Department of Environmental Studies, University of Delhi, for providing access to the growth chamber facility. We also acknowledge the Forest Department of the state of Rajasthan (India) for permission to collect seeds from the forest and the University Grants Commission, India for financial support. The authors would like to thank the anonymous reviewers for their constructive suggestions and Enago (www.enago.com) for the English-language review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidalia, A., Hanief, M. & Rao, K.S. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica 55, 231–239 (2017). https://doi.org/10.1007/s11099-016-0224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0224-8

Additional key words

Navigation