Skip to main content

Advertisement

Log in

Growth and leaf gas exchange in Populus euphratica across soil water and salinity gradients

  • Published:
Photosynthetica

Abstract

Soil water and salinity conditions of the riparian zones along the Tarim River, northwest China, have been undergoing alterations due to water use by human or climate change, which is expected to influence the riparian forest dominated by an old poplar, Populus euphratica. To evaluate the effects of such habitat alterations, we examined photosynthetic and growth performances of P. euphratica seedlings across experimental soil water and salinity gradients. Results indicated that seedlings were limited in their physiological performance, as evidenced by decreases in their height and biomass, and the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), the effective quantum-use efficiency of PSII (Fv′/Fm′), and photochemical quenching (qP) under mild (18% soil water content, SWC; 18.3 g kg−1 soil salt content, SSC) and moderate (13% SWC, 22.5 g kg−1 SSC) water or salinity stress. However, seedlings had higher root/shoot ratio (R/S), increased nonphotochemical quenching (NPQ), and water-use efficiency (WUE) relative to control under such conditions. Under severe (8% SWC, 27.9 g kg−1 SSC) water or salinity stress, P. euphratica seedlings had only a fifth of biomass of those under control conditions. It was also associated with damaged PSII and decreases in WUE, the maximal net photosynthetic rate (P Nmax), light-saturation point (LSP), and apparent quantum yield (α). Our results suggested that the soil conditions, where P.euphratica seedlings could grow normally, were higher than ∼ 13% for SWC, and lower than ∼22.5 g kg−1 for SSC, the values, within the seedlings could acclimate to water or salinity stress by adjusting their R/S ratio, improving WUE to limit water loss, and rising NPQ to dissipate excessive excitation energy. Once SWC was lower than 8% or SCC higher than ∼28 g kg−1, the seedlings suffered from the severe stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

E :

transpiration rate

Fm :

maximal fluorescence in dark-adapted state

Fm′:

maximal fluorescence in light-adapted state

Fs :

steady-state fluorescence yield

Fv/Fm :

maximal quantum yield of PSII photochemistry

Fv′/Fm′:

effective quantum use efficiency of PSII

F0 :

minimal fluorescence in dark-adapted state

F0′:

minimal fluorescence in light-adapted state

g s :

stomatal conductance

LCP:

light-compensation point

LSP:

light-saturation point

L s :

stomatal limitation

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

P Nmax :

leaf maximal net photosynthetic rate

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

qp :

photochemical quenching

R D :

respiration rate

R/S:

root/shoot ratio

SWC:

soil water content

SSC:

soil salt content

WUE:

water-use efficiency

α:

apparent quantum yield

θ:

the convexity of the light-response curve

References

  • Berry, J.A., Downton, W.J.S.: Environmental regulation of photosynthesis. — In: Govindjee (ed.): Photosynthesis: Development, Carbon Metabolism, and Plant Productivity. Vol. II. Pp. 263–343. Academic Press, New York - London - Paris - San Diego - San Francisco - São Paulo - Sydney - Tokyo - Toronto 1982.

    Google Scholar 

  • Bertolli, S.C., Rapchan, G.L., Souza, G.M.: Photosynthetic limitations caused by different rates of water-deficit induction in Glycine max and Vigna unguiculata. — Photosynthetica 50: 329–336, 2012.

    Article  CAS  Google Scholar 

  • Brestic, M., Cornic, G., Fryer, M.J. et al.: Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? — Planta 196: 450–457, 1995.

    Article  CAS  Google Scholar 

  • Calatayud, A., Deltoro, V.I., Abadia, A. et al.: Effects of ascorbate feeding on chlorophyll fluorescence and xanthophylls cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. — Physiol. Plant. 105: 679–684, 1999.

    Article  CAS  Google Scholar 

  • Castelli, R.M., Chambers, J.C., Tausch, R.J.: Soil-plant relations along a soil-water gradient in great basin riparian meadows. — Wetlands 20: 251–266, 2000.

    Article  Google Scholar 

  • Chaves, M.M.: Effects of water deficits on carbon assimilation. — J. Exp. Bot. 42: 1–16, 1991.

    Article  CAS  Google Scholar 

  • Chen, Y.N., Chen, Y.P., Li, W. H. et al.: Response of the accumulation of proline in the bodies of Populus euphratica to the change of groundwater level at the lower reaches of Tarim River. — Chin. Sci. Bull. 48: 1995–1999, 2003.

    CAS  Google Scholar 

  • Chen, Y.P., Chen, Y.N., Li, W.H. et al.: Characterization of photosynthesis of Populus euphratica grown in the arid region. — Photosynthetica 44: 622–626, 2006.

    Article  Google Scholar 

  • Delfine, S., Alvino, A., Villani, M.C. et al.: Restrictions to carbon dioxide conductance and photosynthesis in Spinach leaves recovering from salt stress. — Plant Physiol. 119: 101–1106, 1999.

    Article  Google Scholar 

  • Farquhar, G. D., Sharkey, T, D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S.: Modeling of photosynthetic response to environmental conditions. — In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology II. Water Relations and Carbon Assimilation. Pp. 549–587. Springer-Verlag, Berlin - Heidelberg - New York 1982.

    Chapter  Google Scholar 

  • Faraloni, C., Cutino, I., Petruccelli, R. et al.: Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. — Environ. Exp. Bot. 73: 49–56, 2011.

    Article  CAS  Google Scholar 

  • Fedina, I.S., Grigorova, I.D., Georgieva, K.M.: Response of barley seedlings to UV-B radiation as affected by NaCl. — J. Plant Physiol. 160: 205–208, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Flexas, J., Diaz-Espejo, A., Galmés, J. et al.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. — Plant Cell Environ. 30: 1284–1298, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Galmés, J., Medrano, H., Flexas, J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. — New Phytol. 175: 81–93, 2007.

    Article  PubMed  Google Scholar 

  • Gindaba, J., Rozanov, A., Negash, L.: Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. — Forest Ecol. Manag. 205: 127–138, 2005.

    Article  Google Scholar 

  • Kalaji, H.M., Govindjee, Bosa, K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. — Environ. Exp. Bot. 73: 64–72, 2011.

    Article  CAS  Google Scholar 

  • Kozlowski, T.T., Kramer, P.J., Pallardy, S.G.: The Physiological Ecology of Woody Plants. Academic Press, San Diego - New York - Boston - London - Sydney - Tokyo - Toronto 1991.

    Google Scholar 

  • Krause, G.H.: Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. — Physiol. Plant. 74: 566–574, 1988.

    Article  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H.C., Fung, L., Wang, S.S. et al.: Photosynthetic response of Populus euphratica to salt stress. — Forest Ecol. Manag. 93: 55–61, 1997.

    Article  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence—a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pan, X., Lada, R., Caldwell, C.D. et al.: Photosynthetic and growth responses of Camelina sativa (L.) Crantz to varying nitrogen and soil water status. — Phtotsynthetica 49: 316–320, 2011.

    Article  CAS  Google Scholar 

  • Pankovic, D., Sakac, A., Kevresan, S. et al.: Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. — J. Exp. Bot. 50: 128–138, 1999.

    Article  Google Scholar 

  • Percival, G.C., Fraser, G.A., Oxenham, G.: Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. — J. Arboricult. 29: 61–65, 2003.

    Google Scholar 

  • Rodríguez, P., Torrecillas, A., Morales, M.A. et al.: Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. — Environ. Exp. Bot. 53: 113–123, 2005.

    Article  Google Scholar 

  • Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Savé, R., Olivella, C., Biel, C. et al.: Seasonal patterns of water relationships, photosynthetic pigments and morphology of Actinidia deliciosa plants of the Hayward and Tomuri cultivars. — Agronomie 14: 121–126, 1994.

    Article  Google Scholar 

  • Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. — Photosynthetica 41: 321–330, 2003.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Seemann, J.R.: Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. — Plant Physiol. 89: 1060–1065, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T.D.: Water stress effects on photosynthesis. — Photosynthetica 24: 651, 1990.

    Google Scholar 

  • Signarbieux, C., Feller, U.: Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. — Environ. Exp. Bot. 71: 192–197, 2011.

    Article  CAS  Google Scholar 

  • Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L. et al: Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. — J. Arid Environ. 74: 1130–1137, 2010.

    Article  Google Scholar 

  • Song, X.S., Shang Z.W., Yin, Z.P. et al.: Mechanism of xanthophyll-cycle-mediated photoprotection in Cerasus humilis seedlings under water stress and subsequent recovery. — Photosynthetica 49: 523–530, 2011.

    Article  CAS  Google Scholar 

  • Souza, R.P., Machado, E.C., Silva, J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. Exp. Bot. 51: 45–56, 2004.

    Article  CAS  Google Scholar 

  • Van Heerden, P.D.R., Swanepoel, J.W., Krüger, G.H.J.: Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. — Environ. Exp. Bot. 61: 124–136, 2007.

    Article  Google Scholar 

  • Valladares, F., Gianoli, E., Gómez, J.M.: Ecological limits to plant phenotypic Plasticity. — New Phytol. 176: 749–763, 2007.

    Article  PubMed  Google Scholar 

  • Villagra, P.E., Cavagnaro, J.B.: Water stress effects on the seedling growth of Prosopis argentina and Prosopis alpataco. — J. Arid Environ. 64: 390–400, 2006.

    Article  Google Scholar 

  • Wang, R.G., Chen, S.L., Deng, L. et al.: Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. —Trees 21: 581–591, 2007.

    Article  CAS  Google Scholar 

  • Wei, L.Y., Huang, Y.Q., Li, X.K. et al.: Effects of soil water on photosynthetic characteristics and leaf traits of Cyclobalanopsis glauca seedlings growing under nutrient-rich and -poor soil. — Acta Ecol. Sinica. 29: 160–165, 2009.

    Article  Google Scholar 

  • Wilkinson, S., Davies, W.J.: ABA-based chemical signaling: the co-ordination of responses to stress in plants. — Plant Cell Environ. 25: 195–210, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Xue,W., Li, X.Y., Zhu, J.T., et al.: Effects of temperature and irradiance on photosystem activity during Alhagi sparsifolia leaf senescence. — Biol. Plant. 56: 785–788, 2012.

    Article  CAS  Google Scholar 

  • Zribi, L., Fatma, G., Fatma, R. et al: Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. — Sci. Hort. 120: 367–372, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Zhao.

Additional information

Acknowledgements: The authors are grateful to anonymous referees for valuable comments and helpful suggestions. The authors would like to thank editors for editing the paper and correcting the language. The authors thank D.Y.Sun, G.Peng, B.S.Ye, for assistance. This work was supported by the National Natural Science Foundation (Grant No. 40830640), the Western Light Foundation of the Chinese Academy of Sciences (XBBS200807), and the Key State Program of China (973 Program No. 2013CB429905).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.Y., Zhao, C.Y., Li, J. et al. Growth and leaf gas exchange in Populus euphratica across soil water and salinity gradients. Photosynthetica 51, 321–329 (2013). https://doi.org/10.1007/s11099-013-0028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0028-z

Additional key words

Navigation