Skip to main content
Log in

Effect of Nanocrystallization on Sulfur Segregation in Fe–Cr–Al Alloy during Oxidation at 1000°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

From the 1980’s a theory named “the sulfur effect” has been applied to explain the scale adhesion and the reactive-element effect (REE) during high-temperature oxidation. It claims that the bond between the oxide scale and the metal substrate is intrinsically strong and that impurity sulfur in the metal segregates at the oxide scale/substrate interface and weakens the bond, and that REs getter the sulfur impurity and prevent it from segregating to the interface. In the present study, a cast polycrystalline sulfur-containing Fe–25Cr–5Al-1S (wt.%) alloy and its magnetron-sputtered nanocrystalline coating were oxidized at 1000°C, and the specimens were examined by XRD and SEM. The scale formed on the cast alloy was cracked and detached from the substrate even after isothermal exposure, and obvious sulfur enrichment was detectable at the scale/substrate interface. While, the scale formed on the nanocrystalline coating was very adherent after 100 cycles oxidation. Here, sulfur was preferentially distributed in the outer scale and internal oxides rather than at the scale/substrate interface. These results provide evidence that nanocrystallization can prevent sulfur segregation at the scale/substrate interface, hence enhance scale adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Allam I. M., Whittle D. P., and Stringer J., (1978). Oxidation of Metals 12: 35

    Article  CAS  Google Scholar 

  2. Stott F. H., Golightly F. A., and Wood G. C., (1979). Corrosion Science 19: 889

    CAS  Google Scholar 

  3. Tien J. K., and Pettit F. S., (1972). Metallurgical Transactions 3: 1587

    CAS  Google Scholar 

  4. Whittle D. P., and Stringer J., (1980). Philosophical Transactions of the Royal Society of London Series A 285: 309

    Google Scholar 

  5. Stott F. H., and Wood G. C., (1987). Material Science Engineering 87: 261

    Article  Google Scholar 

  6. Huntz A. M., (1987). Material Science Engineering 87: 251

    Article  CAS  Google Scholar 

  7. Hou P. Y., and Stringer J., (1995). Material Science Engineering A202: 1

    Article  CAS  Google Scholar 

  8. Smeggil J. G., Funkenbusch A. W., and Bornstein N. S., (1986). Metallurgical Transactions A17: 923

    Google Scholar 

  9. Lees D. G., (1987). Oxidation of Metals 27: 75

    Article  CAS  Google Scholar 

  10. Smeggil J. G., (1987). Material Science Engineering 87: 261

    Article  CAS  Google Scholar 

  11. P. Y. Hou, and J. Stringer, in Microscopy of Oxidation. M. J. Bennett, and G. W. Lorimer, eds. (The Inst. of Metals, 1991), pp. 362–368

  12. Hou P. Y., and Stringer J., (1992). Oxidation of Metals 38: 323

    Article  CAS  Google Scholar 

  13. Grabke H. J., Wiemer D., and Viefhaus H., (1991). Applied Surface Science 47: 243

    Article  CAS  Google Scholar 

  14. Tolpygo V. K., and Viefhaus H., (1999). Oxidation of Metals 52: 1

    Article  CAS  Google Scholar 

  15. Hou P. Y., and Ackerman G. D., (2001). Applied Surface Science 178: 156

    Article  CAS  Google Scholar 

  16. Hou P. Y., Zhang X. F., and Cannon R. M., (2004). Scripta Materialia 50: 45

    Article  CAS  Google Scholar 

  17. Hou P. Y., (2000). Materials and Corrosion 51: 329

    Article  CAS  Google Scholar 

  18. Smialek J. L., (1987). Metallurgical Transactions 18A: 164

    Google Scholar 

  19. Smialek J. L., (1991). Metallurgical Transactions 22A: 739

    Google Scholar 

  20. Smialek J. L., and Tubbs B. K., (1995). Metallurgical and Materials Transactions 26A: 427

    Google Scholar 

  21. Smialek J. L., Jayne D. T., Schaeffer J. C., and Murphy W. C., (1994). Thin Solid Films 253: 285

    Article  CAS  Google Scholar 

  22. Smialek J. L., (2001). Oxidation of Metals 55: 75

    Article  CAS  Google Scholar 

  23. Smialek J. L., (1998). Transactions of the ASME 120: 370

    CAS  Google Scholar 

  24. Lou H. Y., and Wang F. H., (1992). Vacuum 43: 757

    Article  CAS  Google Scholar 

  25. Lou H. Y., Zhu S. L., and Wang F. H., (1995). Oxidation of Metals 43: 317

    Article  CAS  Google Scholar 

  26. Wang F. H., Lou H. Y., and Wu W. T., (1995). Oxidation of Metals 43: 395

    Article  CAS  Google Scholar 

  27. Wang F. H., Lou H. Y., Zhu S. L., and Wu W. T., (1996). Oxidation of Metals 45: 39

    Article  CAS  Google Scholar 

  28. Wang F. H., (1997). Oxidation of Metals 48: 215

    Article  CAS  Google Scholar 

  29. Wang F. H., (1997). Oxidation of Metals 47: 247

    Article  CAS  Google Scholar 

  30. Yang S. L., Wang F. H., Wu W. T., (2001). Intermetallics 9: 741

    Article  CAS  Google Scholar 

  31. Peng X., Wang F. H., (2003). Corrosion of Science 45: 2293

    Article  CAS  Google Scholar 

  32. Chen G. F., Lou H. Y., (2000). Oxidation of Metals 53: 467

    Article  CAS  Google Scholar 

  33. Giggins C. S., and Pettit F. S., (1969). Transactions of the Metallurgical Society of AIME 245: 2495

    CAS  Google Scholar 

  34. Giggins C. S., and Pettit F. S., (1969). Transactions of the Metallurgical Society of AIME 245: 2509

    CAS  Google Scholar 

  35. Merz M. D., (1979). Metallurgical Transactions 10A: 71

    Google Scholar 

  36. Le Gall R., Querard E., Saindrenan G., Mourton H., and Roptin D., (1996). Scripta Materialia 35: 1175

    Article  CAS  Google Scholar 

  37. Quadakkers W. J., Wasserfuhr C., Khanna A. S., and Nickel H., Material Sciences and Technology 4: 1119 (1988)

    CAS  Google Scholar 

  38. Khanna A. S., Jonas H., and Quadakkers W. J., Werkstoffe und Korrosion 40: 552 (1989)

    Article  CAS  Google Scholar 

  39. J. L. Smialek, in Procedings of High Temp. Materials Chemistry IV, Z. A. Munir, D. Cubicciotti, and H. Tagawa, eds (Electrochem. Soc., 1998) pp. 241–253

  40. Smialek J. L., (2000). Meterials at High Temperature 17: 71

    CAS  Google Scholar 

  41. Amano T., Watanabe T., and Michiyama K., (2000). Oxidation of Metals 53: 451

    Article  CAS  Google Scholar 

  42. Yang S. L., Wang F. H., Sun Z. M., Zhu S. L., (2002). Intermetallics 10: 467

    Article  CAS  Google Scholar 

  43. Fox P., Lees D. G., and Lorimer G. W., (1991). Oxidation of Metals 36: 491

    Article  CAS  Google Scholar 

  44. Hahn H., Hofler J. H., and Averback R. S., (1989). Defect and Diffusion Forum 66–69: 549

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Scientific Foundation of China (NSFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Wang, F. Effect of Nanocrystallization on Sulfur Segregation in Fe–Cr–Al Alloy during Oxidation at 1000°C. Oxid Met 65, 195–205 (2006). https://doi.org/10.1007/s11085-006-9014-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9014-1

Keywords

Navigation