Skip to main content
Log in

Effect of Nanocrystalline Structure on the Oxidation Behavior of Fe–20Cr–3Al Alloy at High Temperatures

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation behavior of nanocrystalline and microcrystalline Fe–20Cr–3Al alloys was investigated at high temperatures (500–800 °C) in the present study. The nanocrystalline Fe–20Cr–3Al alloy was synthesized by high-energy ball milling followed by spark plasma sintering. The synthesized nanocrystalline Fe–20Cr–3Al alloy was annealed to prepare its microcrystalline counterparts. The nanocrystalline alloy exhibited superior oxidation resistance than its microcrystalline counterparts, which is explained by oxidation kinetics and nature of oxide formed on both the alloys. The presence of higher grain boundary area in the nanocrystalline alloy enhances the diffusivity on metal and as a result, a considerably more protective oxide layer formed on the nanocrystalline alloy. On the other hand, a considerably less protective oxide layer formed on the microcrystalline alloy due to limited diffusion of metal. Additionally, both the nanocrystalline and microcrystalline alloys exhibited superior oxidation resistance at 800 °C than that of 700 °C, which is contrary to common steels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Z. Liu, W. Gao, K. L. Dahm, and F. Wang, Acta Materialia 46, 1691 (1998).

    Article  CAS  Google Scholar 

  2. W. Gao, Z. Liu, and Z. Li, Advanced Materials 13, 1001 (2001).

    Article  CAS  Google Scholar 

  3. S. E. Sadique, A. H. Mollah, M. S. Islam, M. M. Ali, M. H. H. Megat, and S. Basri, Oxidation of Metals 54, 385 (2000).

    Article  CAS  Google Scholar 

  4. F. H. Stott and G. C. Wood, Materials Science and Engineering 87, 267 (1987).

    Article  CAS  Google Scholar 

  5. H. Asteman and M. Spiegel, Corrosion Science 50, 1734 (2008).

    Article  CAS  Google Scholar 

  6. H. Josefsson, F. Liu, J. E. Svensson, M. Halvarsson, and L. G. Johansson, Materials and Corrosion 56, 801 (2005).

    Article  CAS  Google Scholar 

  7. W. J. Quadakkers, D. Naumenko, E. Wessel, and V. Kochubey, Oxidation of Metals 61, 17 (2004).

    Article  CAS  Google Scholar 

  8. R. K. Singh Raman and R. K. Gupta, Corrosion Science 51, 316 (2009).

    Article  Google Scholar 

  9. R. K. Singh-Raman, Metals (Basel) 11, 695 (2021).

    Article  Google Scholar 

  10. F. H. Stott, G. C. Wood, and J. Stringert, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  11. R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  CAS  Google Scholar 

  12. P. Tomaszewicz and G. R. Wallwork, Reviews on High-Temperature Materials 4, 75 (1978).

    CAS  Google Scholar 

  13. Z. G. Zhang, P. Y. Hou, F. Gesmundo, and Y. Niu, Applied Surface Science 253, 881 (2006).

    Article  CAS  Google Scholar 

  14. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006).

    Article  CAS  Google Scholar 

  15. Z. G. Zhang, X. L. Zhang, L. Sheng, and X. Teng, Open Corrosion Journal 2, 37 (2009).

    Article  CAS  Google Scholar 

  16. E. Airiskallio, E. Nurmi, M. H. Heinonen, et al., Corrosion Science 52, 3394 (2010).

    Article  CAS  Google Scholar 

  17. Y. Niu, S. Wang, F. Gao, Z. G. Zhang, and F. Gesmundo, Corrosion Science 50, 345 (2008).

    Article  CAS  Google Scholar 

  18. J. Engkvist, S. Canovic, K. Hellström, et al., Oxidation of Metals 73, 233 (2010).

    Article  CAS  Google Scholar 

  19. P. T. Moseley, K. R. Hyde, B. A. Bellamy, and G. Tappin, Corrosion Science 24, 547 (1984).

    Article  CAS  Google Scholar 

  20. F. Liu, H. Götlind, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Corrosion Science 50, 2272 (2008).

    Article  CAS  Google Scholar 

  21. F. Liu, H. Josefsson, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Materials at High Temperatures 22, 521 (2005).

    Article  CAS  Google Scholar 

  22. H. Gleiter, Physica Status Solidi 41, 41 (1992).

    Article  Google Scholar 

  23. Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu, and K. Lu, Acta Materialia 51, 4319 (2003).

    Article  CAS  Google Scholar 

  24. H. Echsler, E. A. Martinez, L. Singheiser, and W. J. Quadakkers, Materials Science and Engineering A 384, 1 (2004).

    Article  Google Scholar 

  25. F. Wang, Oxidation of Metals 48, 215 (1997).

    Article  CAS  Google Scholar 

  26. B. V. Mahesh and R. K. Singh Raman, Metallurgical and Materials Transactions A 45, 5799 (2014).

    Article  CAS  Google Scholar 

  27. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély, Journal of Applied Crystallography 32, 992 (1999).

    Article  Google Scholar 

  28. R. Kumar, J. Joardar, R. K. Singh Raman, V. S. Raja, S. V. Joshi, and S. Parida, Journal of Alloys and Compounds 671, 164 (2016).

    Article  CAS  Google Scholar 

  29. V. S. Rao, R. G. Baligidad, and V. S. Raja, Intermetallics 10, 73 (2002).

    Article  Google Scholar 

  30. A. W. Bowen and G. M. Leak, Metallurgical Transactions 1, 1695 (1970).

    Article  CAS  Google Scholar 

  31. J. Takada, S. Yamamoto, S. Kikuchi, and M. Adachi, Oxidation of Metals 25, 93 (1986).

    Article  CAS  Google Scholar 

  32. F. S. Buffington, K. Hirano, and M. Cohen, Acta Metallurgica 9, 434 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Rajiv Kumar) acknowledges to IITB-Monash Research Academy for providing financial support for the research work. The authors also acknowledge Prof. B. S. Murty for facilitating ball milling and spark plasma sintering work at Indian Institute of Technology Madras, Chennai. The authors also acknowledge the Central Surface Analytical Facility (ESCA) at IIT Bombay for providing the facilities for XPS.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions in the research paper are as follows: RK was involved in investigation, methodology, validation, writing—original draft preparation. RKSR, SRB, VSR and SP were involved in writing—reviewing and editing. RKSR, VSR and SP were involved in supervision. SRB collected resources.

Corresponding authors

Correspondence to Rajiv Kumar or S. Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Not applicable.

Consent to Participate

All authors have made substantial contributions to the manuscript.

Consent for Publication

All authors have approved the manuscript for publication.

Ethics Approval

No ethical approval is required for the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh Raman, R.K., Bakshi, S.R. et al. Effect of Nanocrystalline Structure on the Oxidation Behavior of Fe–20Cr–3Al Alloy at High Temperatures. Oxid Met 97, 307–321 (2022). https://doi.org/10.1007/s11085-021-10090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10090-3

Keywords

Navigation