Skip to main content
Log in

Accelerated dynamical approaches for finding the unique positive solution of \(\mathcal {K}\mathcal {S}\)-tensor equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new class of tensors called \(\mathcal {K}\mathcal {S}\)-tensors, which is a subset of non-singular \(\mathcal {P}\)-tensors and generalization of \({\mathscr{H}}^{+}\)-tensors, is proposed. It is proved that the system of \(\mathcal {K}\mathcal {S}\)-tensor equations always has a unique positive solution for any positive right-hand side by proposing a positive increasing map. Two approaches based on dynamical system are presented to find the unique positive solution. The theoretical analysis results show that the convergence of the proposed models is guaranteed, and numerical examples further illustrate that the given models are feasible and effective in finding the positive solution of \(\mathcal {K}\mathcal {S}\)-tensor equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Che, M., Wei, Y.: Theory and computation of complex tensors and its applications. Springer, Singapore (2020)

  2. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and their applications. Singapore, Springer (2018)

  3. Wei, Y., Ding, W.: Theory and Computation of Tensors: Multi-dimensional Arrays. Academic Press (2016)

  4. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  5. Azimzadeh, P., Bayraktar, E.: High order Bellman equations and weakly chained diagonally dominant tensors. SIAM J. Matrix Anal. Appl. 40 (1), 276–298 (2019)

    Article  MathSciNet  Google Scholar 

  6. Ding, W., Wei, Y.: Solving multi-linear systems with \(\mathcal {M}\)-tensors. J. Sci. Comput. 68(2), 689–715 (2016)

    Article  MathSciNet  Google Scholar 

  7. Li, X., Ng, M K: Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China 10(3), 649–680 (2015)

    Article  MathSciNet  Google Scholar 

  8. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(\mathcal {Z}\)-tensor complementarity problems. Optim. Lett. 11(3), 471–482 (2017)

    Article  MathSciNet  Google Scholar 

  9. Wang, X., Che, M., Qi, L., Wei, Y.: Modified gradient dynamic approach to the tensor complementarity problem. Optim. Methods Softw. 35(2), 394–415 (2020)

    Article  MathSciNet  Google Scholar 

  10. Hu, S., Huang, Z H, Ling, C., Qi, L.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50(1), 508–531 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, X., Che, M., Wei, Y.: Existence and uniqueness of positive solution for \({\mathscr{H}}^+\)-tensor equations. Appl. Math. Lett. 98, 191–198 (2019)

    Article  MathSciNet  Google Scholar 

  12. Yan, W., Ling, C., Ling, L., He, H.: Generalized tensor equations with leading structured tensors. Appl. Math. Comput. 361, 311–324 (2019)

    MathSciNet  MATH  Google Scholar 

  13. He, H., Ling, C., Qi, L., Zhou, G.: A globally and quadratically convergent algorithm for solving ultilinear systems with \(\mathcal {M}\)-tensors. J. Sci. Comput. 76, 1718–1741 (2018)

    Article  MathSciNet  Google Scholar 

  14. Liu, D., Li, W., Vong, S W: The tensor splitting with application to solve multi-linear systems. J. Comput. Appl. Math. 330, 75–94 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Liu, D., Vong, S.-W.: Comparison results for splitting iterations for solving multi-linear systems. Appl. Numer. Math. 134, 105–121 (2018)

    Article  MathSciNet  Google Scholar 

  16. Han, L.: A homotopy method for solving multilinear systems with \(\mathcal {M}\)-tensors. Appl. Math. Lett. 69(Supplement C), 49–54 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, D H, Xie, S., Xu, H R: Splitting methods for tensor equations. Numer. Linear Algebra Appl. 24(5), e2102 (2017)

    Article  MathSciNet  Google Scholar 

  18. Xie, Z., Jin, X., Wei, Y.: Tensor methods for solving symmetric \(\mathcal {M}\)-tensor systems. J. Sci. Comput. 74(1), 412–425 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lv, C Q, Ma, C F: A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332, 13–25 (2018)

    Article  MathSciNet  Google Scholar 

  20. Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018)

    Article  MathSciNet  Google Scholar 

  21. Li, Z., Dai, Y., Gao, H.: Alternating projection method for a class of tensor equations. J. Comput. Appl. Math. 346, 490–504 (2019)

    Article  MathSciNet  Google Scholar 

  22. Xie, S., Li, D., Xu, H.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175(1), 119–136 (2017)

    Article  MathSciNet  Google Scholar 

  23. Xu, H., Li, D., Xie, S.: An equivalent tensor equation to the tensor complementarity problem with positive semi-definite z -tensor. Optim. Lett. 13(4), 685–694 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ling, C., Yan, W., He, H., Qi, L.: Further study on tensor absolute value equations. Sci. China Math. 63, 2137–2156 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, X., Che, M., Wei, Y.: Neural network approach for solving nonsingular multi-linear tensor systems. J. Comput. Appl. Math. 368, 112569 (2020)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with \({\mathscr{M}}\)-tensors. Neurocomputing 351, 33–42 (2019)

    Article  Google Scholar 

  27. Feng, D., Yang, S., Chen, T.: Gradient-based identification methods for hammerstein nonlinear armax models. Nonlinear Dyn. 45(1-2), 31–43 (2006)

    Article  MathSciNet  Google Scholar 

  28. Ramezani, S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73(73), 1399–1421 (2013)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.: A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 70(1), 513–524 (2006)

    Article  Google Scholar 

  30. Zhang, Y., Shi, Y., Chen, K., Wang, C.: Global exponential convergence and stability of gradient-based neural network for online matrix inversion. Appl. Math. Comput. 215(3), 1301–1306 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Stanimirović, P.S., Petković, M.D., Gerontitis, D.: Gradient neural network with nonlinear activation for computing inner inverses and the Drazin inverse. Neural. Process. Lett. 48(1), 109–133 (2018)

    Article  Google Scholar 

  32. Stanimirović, P.S., Zivković, I.S., Wei, Y.: Recurrent neural network for computing the Drazin inverse. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2830–2843 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y., Chen, Z., Chen, K.: Convergence properties analysis of gradient neural network for solving online linear equations. Acta Autom. Sin. 35 (8), 1136–1139 (2009)

    Article  MathSciNet  Google Scholar 

  34. Ding, W., Qi, L., Wei, Y.: \(\mathcal {M}\)-tensors and nonsingular \(\mathcal {M}\)-tensors. Linear Algebra Appl. 439(10), 3264–3278 (2013)

    Article  MathSciNet  Google Scholar 

  35. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 129–132. IEEE (2005)

  36. Chen, H., Li, G., Qi, L.: Sum-of-squares tensors and their sum-of-squares rank. arXiv:1504.03414V1 (2015)

  37. Wang, X., Wei, Y.: \(\mathcal {H}\)-tensors and nonsingular \(\mathcal {H}\)-tensors. Front. Math. China 11(3), 557–575 (2016)

    Article  MathSciNet  Google Scholar 

  38. Berman, A., Plemmons, R J: Nonnegative Matrices in the Mathematical Sciences. Siam, Philadelphia (1994)

  39. Facchinei, F., Pang, J-S: Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media (2007)

  40. Ding, W., Luo, Z., Qi, L.: P-tensors, P0-tensors, and tensor complementarity problem. Linear Algebra Appl. 555, 336–354 (2018)

    Article  MathSciNet  Google Scholar 

  41. Schauml, Fer, U.: A new subclass of P-matrices. Linear Algebra Appl. 393(1), 353–364 (2003)

    MathSciNet  Google Scholar 

  42. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces. SIAM Rev. 18(4), 620–709 (1976)

    Article  MathSciNet  Google Scholar 

  43. Fleming, W.: Functions of several variables, 2nd edn. Springer, New York (1977)

    Book  Google Scholar 

  44. Canuto, C., Tabacco, A.: Mathematical Analysis ii, 2nd edn. Springer, India (2010)

    Book  Google Scholar 

  45. Zabczyk, J.: Mathematical Control Theory:an Introduction. Birkhäuser (2015)

Download references

Funding

Maolin Che is supported by the Fundamental Research Funds for the Central Universities under grant JBK1801058 and the National Natural Science Foundation of China under grant 11901471. Yimin Wei is supported by the National Natural Science Foundation of China under grant 11771099 and Innovation Program of Shanghai Municipal Education Commission. Xuezhong Wang is supported by the National Natural Science Foundation of China under grant 11771099, 12061032; Start-Up Fund of Doctoral Research, Hexi University; Innovative Ability Promotion Program of Gansu Province under grant 2019B-146. Changxin Mo is supported by the National Natural Science Foundation of China under grant 11771099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Mo, C., Che, M. et al. Accelerated dynamical approaches for finding the unique positive solution of \(\mathcal {K}\mathcal {S}\)-tensor equations. Numer Algor 88, 1787–1810 (2021). https://doi.org/10.1007/s11075-021-01095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01095-9

Keywords

Mathematics Subject Classification (2010)

Navigation