Skip to main content
Log in

Tensor absolute value equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader B W, Kolda T G. MATLAB Tensor Toolbox Version 2.6. https://doi.org/www.sandia.gov/~tgkolda/TensorToolbox/, 2012

    Google Scholar 

  2. Bai X L, Huang Z H, Wang Y. Global uniqueness and solvability for tensor complementaity problems. J Optim Theory Appls, 2016, 170: 72–84

    Article  MATH  Google Scholar 

  3. Bonnans J F, Cominetti R, Shapiro A. Second order optimality conditions based on parabolic second order tangent sets. SIAM J Optim, 1999, 9: 466–493

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang K, Qi L, Zhang T. A survey on the spectral theory of non-negative tensors. Numer Linear Algebra Appl, 2013, 20: 891–912

    Article  MathSciNet  MATH  Google Scholar 

  5. Che M, Qi L, Wei Y. Positive definite tensors to nonlinear complementarity problems. J Optim Theory Appl, 2016, 168: 475–487

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen Z, Qi L. A semismooth Newton method for tensor eigenvalue complementarity problem. Comput Optim Appl, 2016, 65: 109–126

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983

    MATH  Google Scholar 

  8. Cottle R W, Pang J-S, Stone R E. The Linear Complementarity Problem. Boston: Academic Press, 1992

    MATH  Google Scholar 

  9. Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding W, Wei Y. Solving multi-linear systems with M-Tensors. J Sci Comput, 2016, 68: 683–715

    Article  MathSciNet  Google Scholar 

  11. Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math Program, 1997, 76: 493–512

    MathSciNet  MATH  Google Scholar 

  12. Facchinei F, Pang J-S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Springer-Verlag, 2003

    MATH  Google Scholar 

  13. Fischer A. A special Newton-type optimization method. Optimization, 1992, 24: 269–284

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang Z, Qi L. Formulating an n-person noncooperative game as a tensor complementarity problem. Comput Optim Appl, 2017, 66: 557–576

    Article  MathSciNet  MATH  Google Scholar 

  15. Li X, Ng M K. Solving sparse non-negative tensor equations: Algorithms and applications. Front Math China, 2015, 10: 649–680

    Article  MathSciNet  MATH  Google Scholar 

  16. Lim L-H. Singular values and eigenvalues of tensors: A variational approach. In: IEEE CAMSAP 2005: First In-ternational Workshop on Computational Advances in Multi-Sensor Adaptive Processing. New York: IEEE, 2005, 129–132

    Google Scholar 

  17. Ling C, He H, Qi L. On the cone eigenvalue complementarity problems for higher-order tensors. Comput Optim Appl, 2016, 63: 143–168

    Article  MathSciNet  MATH  Google Scholar 

  18. Ling C, He H, Qi L. Higher-degree eigenvalue complementarity problems for tensors. Comput Optim Appl, 2016, 64: 149–176

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo Z Y, Qi L, Xiu N H. The sparse solutions to Z-tensor complementarity problems. Optim Lett, 2017, 11: 471–482

    Article  MathSciNet  MATH  Google Scholar 

  20. Mangasarian O L. Absolute value programming. Comput Optim Appl, 2007, 36: 43–53

    Article  MathSciNet  MATH  Google Scholar 

  21. Mangasarian O L. Knapsack feasibility as an value equation solvable by successive linear programming. Optim Lett, 2009, 3: 161–170

    Article  MathSciNet  MATH  Google Scholar 

  22. Mangasarian O L, Meyer R R. Absolute value equations. Linear Algebra Appl, 2006, 419: 359–367

    Article  MathSciNet  MATH  Google Scholar 

  23. Miffin R. Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1997, 15: 959–972

    Article  MathSciNet  Google Scholar 

  24. Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

    Article  MathSciNet  MATH  Google Scholar 

  25. Qi L, Luo Z Y. Tensor Analysis: Special Theory and Special Tensors. Philadelphia: Society of Industrial and Applied Mathematics, 2017

    Book  MATH  Google Scholar 

  26. Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program, 2000, 87: 1–35

    Article  MathSciNet  MATH  Google Scholar 

  27. Qi L, Sun J. A nonsmooth version of Newton’s method. Math Program, 1993, 58: 353–367

    Article  MathSciNet  MATH  Google Scholar 

  28. Qi L, Yin Y. A strongly semismooth integral function and its application. Comput Optim Appl, 2003, 25: 223–246

    Article  MathSciNet  MATH  Google Scholar 

  29. Song Y, Qi L. Properties of some classes of structured tensors. J Optim Theory Appl, 2015, 165: 854–873

    Article  MathSciNet  MATH  Google Scholar 

  30. Song Y, Qi L. Tensor complementarity problem and semi-positive tensors. J Optim Theory Appl, 2016, 169: 1069–1078

    Article  MathSciNet  MATH  Google Scholar 

  31. Song Y, Qi L. Eigenvalue analysis of constrained minimization problem for homogeneous polynomials. J Global Optim, 2016, 64: 563–575

    Article  MathSciNet  MATH  Google Scholar 

  32. Song Y, Yu G. Properties of solution set of tensor complementarity problem. J Optim Theory Appl, 2016, 170: 85–96

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun D, Qi L. On NCP-functions. Comput Optim Appl, 1999, 13: 201–220

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun D, Sun J. Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math Program, 2005, 103: 575–581

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Y, Huang Z H, Bai X L. Exceptionally regular tensors and tensor complementarity problems. Optim Methods Softw, 2016, 31: 815–828

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei Y, Ding W. Theory and Computation of Tensors: Multi-Dimensional Arrays. Amsterdam: Academic Press, 2016

    MATH  Google Scholar 

  37. Xie Z, Jin X, Wei Y. Tensor methods for solving symmetric M-tensor systems. J Sci Comput, 2018, 74: 412–425

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu F, Ling C. Some properties on Pareto-eigenvalues of higher-order tensors. Oper Res Trans, 2015, 19: 34–41

    MathSciNet  MATH  Google Scholar 

  39. Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou G, Caccetta L, Teo K L. A superlinearly convergent method for a class of complementarity problems with non-Lipschitzian functions. SIAM J Optim, 2010, 20: 1811–1827

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671220, 11401331, 11771244 and 11271221), the Nature Science Foundation of Shandong Province (Grant Nos. ZR2015AQ013 and ZR2016AM29), and the Hong Kong Research Grant Council (Grant Nos. PolyU 501913, 15302114, 15300715 and 15301716). The authors thank the anonymous referees for their constructive comments and suggestions which led to a significantly improved version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Zhang, L., Chen, C. et al. Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018). https://doi.org/10.1007/s11425-017-9238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9238-6

Keywords

MSC(2010)

Navigation