Skip to main content
Log in

On the performance of curvature stabilization time stepping methods for double-diffusive natural convection flows in the presence of magnetic field

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper considers analytically and numerically the curvature-based stabilization method for double-diffusive natural convection flows in the presence of magnetic field. Unconditionally stable and optimally accurate second-order approximations are obtained. The impact of curvature stabilization on different flow fields are presented for several numerical test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  Google Scholar 

  2. Çıbık, A., Demir, M., Kaya, S.: A family of second order time stepping methods for the Darcy-Brinkman equations. J. Math. Anal. Appl. 472, 148–175 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chamkha, A.J., Al-Naser, H.: Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. Int. J. Heat Mass Transf. 45, 2465–2483 (2002)

    Article  Google Scholar 

  4. Chen, S., Yang, B., Luo, K.H., Xiong, X., Zheng, C.: Double diffusion natural convection in a square cavity filled with nanofluid. Int. J. Heat Mass Transf. 95, 1070–1083 (2016)

    Article  Google Scholar 

  5. Dastmalchi, M., Sheikhzadeh, G.A., Arani, A.A.A.: Double diffusive natural convective in a porous square enclosure filled with nanofluid. Int. J. Therm. Sci. 95, 88–98 (2015)

    Article  Google Scholar 

  6. Dost, S., Liu, Y.C., Lent, B., Redden, R.F.: A numerical simulation study for the effect of applied magnetic field in growth of CdTe single crystals by the travelling heater method. Int. J. Appl. Electromagn. Mech. 17, 271–288 (2003)

    Article  Google Scholar 

  7. Gelfgat, A.Y., Bar-Yoseph, P.Z.: The effect of an external magnetic field on oscillatory instability of convective flows in a rectangular cavity. Phys. Fluids 13, 2269–2279 (2001)

    Article  Google Scholar 

  8. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes equations, vol. 749. Springer, Berlin (1979). Lecture Notes in Mathematics

    Book  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite Element Methods for the Navier-Stokes Equations Theory and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  10. Han, H., Kuehn, T.H.: Double diffusive natural convection in a vertical rectangular enclosure -II, Numerical study. Int. J. Heat Mass Transf. 34, 461–471 (1991)

    Article  Google Scholar 

  11. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  12. He, Y., Zou, J.: A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM Math. Model. Numer. Anal. 52(1), 181–206 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  14. Jiang, N., Mohebujjaman, M., Rebholz, L., Trenchea, C.: An optimally accurate discrete regularization for second order timestepping methods for Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 310, 388–405 (2016)

    Article  MathSciNet  Google Scholar 

  15. John, V.: Finite Element Methods for Incompressible Flow Problems, vol. 51. Springer, Cham (2016)

    Book  Google Scholar 

  16. Kamakura, K., Ozoe, H.: Three-dimensional analyses of double diffusive convection in a two-layer system at high Rayleigh number. Int. J. Therm. Sci. 41, 1045–1053 (2002)

    Article  Google Scholar 

  17. Layton, W.: Introduction to the numerical analysis of incompressible viscous flows. SIAM (2008)

  18. Ma, C.: Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal. Real. 10, 2666–2678 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mahmoudi, A.H., Abu-Nada, E.: Combined effect of magnetic field and nanofluid variable properties on heat transfer enhancement in natural convection. Number Heat Transfer A 63, 452–472 (2013)

    Article  Google Scholar 

  20. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1999)

    Book  Google Scholar 

  21. Ostrach, S.: Natural convection with combined driving forces. Phys. Chem. Hydrodyn. 1, 233–247 (1980)

    Google Scholar 

  22. Parveen, R., Mahapatra, T.R.: Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating. Heliyon 5(9), e02496 (2019)

    Article  Google Scholar 

  23. Sezai, I., Mohamad, A.A.: Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients. Phys. Fluids 12, 2210–2223 (2000)

    Article  Google Scholar 

  24. Trenchea, C.: Second-order uncondionally stable IMEX schemes: Implicit for local effects and explicit for nonlocal effects. ROMAI J. 12, 163–178 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Viskanta, R., Bergman, T.L., Incropera, F.P.: Double-diffusive natural convection. In: Kakac, S., Aung, W., Viskanta, R. (eds.) Natural Convection: Fundamentals and Applications, Hemisphere, Washington, pp 1075–1099 (1985)

  26. Yang, Y.-B., Jiang, Y.-L.: Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem. Comput. Methods Appl. Math. 16, 321–344 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yu, P.X., Xiao, Z., Wu, S., Tian, Z.F., Cheng, X.: High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source. Int. J. Heat Mass Transf. 110, 613–628 (2017)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant number 118F323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Cibik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 3.1

Appendix: Proof of Theorem 3.1

Proof

We consider continuous variational formulations of (1.1) to derive error equations at time tn+𝜃 = (n + 𝜃t.

$$ \begin{array}{@{}rcl@{}} &&{}({D}_{n+\theta}({ u}),{ v}^{h})+Pr ({F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u}),\nabla { v}^{h})+ b^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),{ v}^{h})\\ &&+Da^{-1}(F_{n+\theta}^{\varepsilon,\nu}({ u}),{ v}^{h}) -({F}_{n+\theta}^{\varepsilon,\nu}(p),\nabla \cdot { v}^{h})\\ &=&PrRa((H_{n+\theta}(T)-NH_{n+\theta}(S)),{ v}^{h})-PrHa^{2}(F_{n+\theta}^{\varepsilon, \nu}({ u}),{ v}^{h})\textbf{e}_{2}\\ &&+\mathcal{E}_{1}({ u}_{n+\theta},T_{n+\theta},S_{n+\theta},{ v}^{h}), \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} &&({D}_{n+\theta}(T),\chi^{h})+({F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla T),\nabla \chi^{h})+c^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon_{1},\gamma}(T),\chi^{h})\\&&=\mathcal{E}_{2}(u_{n+\theta},T_{n+\theta},\chi^{h}), \end{array} $$
(A.2)
$$ \begin{array}{@{}rcl@{}} &&({D}_{n+\theta}(S),{\Phi}^{h})+Le^{-1}({F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla S),\nabla {\Phi}^{h})+d^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(S),{\Phi}^{h}),\\ &&=\mathcal{E}_{3}({ u}_{n+\theta},S_{n+\theta},{\Phi}^{h}). \end{array} $$
(A.3)

where:

$$ \begin{array}{@{}rcl@{}} && {} \mathcal{E}_{1}({ u}_{n+\theta},p_{n+\theta},T_{n+\theta},S_{n+\theta},{ v}^{h})=({D}_{n+\theta}({ u})-{ u}_{t}(t_{n+\theta}),{ v}^{h})+Pr ({F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})-\nabla { u}(t_{n+\theta}),\nabla { v}^{h})\\ &&+ b^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon,\nu}(u),{ v}^{h})-b^{*}(u(t_{n+\theta}),u(t_{n+\theta}),{ v}^{h})+Da^{-1}(F_{n+\theta}^{\varepsilon,\nu}(u)-u(t_{n+\theta}),{ v}^{h})\\ &&-({F}_{n+\theta}^{\varepsilon,\nu}(p)- p(t_{n+\theta}),\nabla \cdot { v}^{h})+PrRa(T(t_{n+\theta})-H_{n+\theta}(T),{ v}^{h})\\ &&-NPrRa(S(t_{n+\theta})-H_{n+\theta}(S),{ v}^{h})-PrHa^{2}(u(t_{n+\theta})-F_{n+\theta}^{\varepsilon, \nu}(u),{ v}^{h})\textbf{e}_{2}, \end{array} $$
(A.4)
$$ \begin{array}{@{}rcl@{}} &&\mathcal{E}_{2}({ u}_{n+\theta},T_{n+\theta},\chi^{h})= ({D}_{n+\theta}(T)-T_{t}(t_{n+\theta}),\chi^{h})+({F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla T)-\nabla T(t_{n+\theta}),\nabla \chi^{h})\\ &&+c^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon_{1},\gamma}(T),\chi^{h})-c^{*}(u(t_{n+\theta}), T(t_{n+\theta}),\chi^{h}), \end{array} $$
(A.5)
$$ \begin{array}{@{}rcl@{}} && \mathcal{E}_{3}({ u}_{n+\theta},S_{n+\theta},{\Phi}^{h})=({D}_{n+\theta}(S)-S_{t}(t_{n+\theta}),{\Phi}^{h})+Le^{-1}({F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla S)-\nabla S(t_{n+\theta}),\nabla {\Phi}^{h})\\ &&+d^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(S),{\Phi}^{h})-d^{*}(u(t_{n+\theta}), S(t_{n+\theta}),{\Phi}^{h}). \end{array} $$
(A.6)

for all (vh, χhh) ∈ (Xh, Whh). Subtracting (2.24)–(2.27) from (A.1) to (A.3) and decomposing the velocity, temperature, and concentration errors as:

$$ \begin{array}{@{}rcl@{}} e_{{ u},{n+\theta}}^{h}&=&{ u}_{n+\theta}-{ u}_{n+\theta}^{h}=({ u}_{n+\theta}-\mathcal{U})-({ u}_{n+\theta}^{h}-\mathcal{U})=\boldsymbol{\eta}_{{ u},n+\theta}-\boldsymbol{\phi}_{{u}, n+\theta}^{h},\\ e_{T,{n+\theta}}^{h}&=&T_{n+\theta}-T_{n+\theta}^{h}=(T_{n+\theta}-\mathcal{T})-(T_{n+\theta}^{h}-\mathcal{T})={\eta}_{T, n+\theta}-\phi_{T,n+\theta}^{h},\\ e_{S,{n+\theta}}^{h}&=&S_{n+\theta}-S_{n+\theta}^{h}=(S_{n+\theta}-\mathcal{S})-(S_{n+\theta}^{h}-\mathcal{S})={\eta}_{S,n+\theta}-\phi_{S,n+\theta}^{h}, \end{array} $$
(A.7)

where \(\mathcal {U}, \mathcal {T}, \text {and}~\mathcal {S}\) denote interpolants of u, T, and S in Vh, Wh,and Ψh, respectively, we have:

$$ \begin{array}{@{}rcl@{}} &&{}({D}_{n+\theta}(\boldsymbol{\phi}_{{ u}}^{h}),{ v}^{h})+Pr ({F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{{ u}}^{h}),\nabla { v}^{h}) +(Da^{-1}-PrHa^{2})(F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}),{ v}^{h})\\ &=&-PrRa((H_{n+\theta}({e_{T}^{h}})-NH_{n+\theta}({e_{S}^{h}})),{ v}^{h})+PrHa^{2}(F_{n+\theta}^{\varepsilon, \nu}(\boldsymbol{\eta}_{{ u}}),{ v}^{h})\textbf{e}_{2}\\ &&+({D}_{n+\theta}(\boldsymbol{\eta}_{{ u}}),{ v}^{h})+Pr ({F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\eta}_{{ u}}),\nabla { v}^{h}) +Da^{-1}(F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{{ u}}),{ v}^{h})\\ &&+b^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),{ v}^{h})-b^{*}({H}_{n+\theta}({ u}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}^{h}),{ v}^{h})\\ &&-({F}_{n+\theta}^{\varepsilon,\nu}(p-p^{h}),\nabla \cdot { v}^{h})-\mathcal{E}_{1}({ u}_{n+\theta},T_{n+\theta},S_{n+\theta},{ v}^{h}), \end{array} $$
(A.8)
$$ \begin{array}{@{}rcl@{}} &&({D}_{n+\theta}({\phi_{T}^{h}}),\chi^{h})+({F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla {\phi_{T}^{h}}),\nabla \chi^{h})\\ &=&({D}_{n+\theta}(\eta_{T}),\chi^{h})+({F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla \eta_{T}),\nabla \chi^{h})+c^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon_{1},\gamma}(T),\chi^{h})\\ &&-c^{*}({H}_{n+\theta}(u^{h}),{F}_{n+\theta}^{\varepsilon_{1},\gamma}(T^{h}),\chi^{h})-\mathcal{E}_{2}(u_{n+\theta},T_{n+\theta},\chi^{h}), \end{array} $$
(A.9)
$$ \begin{array}{@{}rcl@{}} &&({D}_{n+\theta}({\phi_{S}^{h}}),{\Phi}^{h})+Le^{-1}({F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla {\phi_{S}^{h}}),\nabla {\Phi}^{h}),\\ &=&({D}_{n+\theta}(\eta_{S}),{\Phi}^{h})+Le^{-1}({F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla \eta_{S}),\nabla {\Phi}^{h})+d^{*}({H}_{n+\theta}(u),{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(S),{\Phi}^{h})\\ &&-d^{*}({H}_{n+\theta}(u^{h}),{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(S^{h}),{\Phi}^{h})-\mathcal{E}_{3}(u_{n+\theta},S_{n+\theta},{\Phi}^{h}). \end{array} $$
(A.10)

Letting \(({ v}^{h},\chi ^{h},{\Phi }^{h})=(F^{\varepsilon _{1},\nu }_{n+\theta }(\mathbf {\phi }^{h}_{u}),{F}_{n+\theta }^{\varepsilon _{1},\gamma }({\phi _{T}^{h}}),{F}_{n+\theta }^{\varepsilon _{2},Le^{-1}}({\phi _{S}^{h}}))\) in (A.8)–(A.10) and utilizing (2.20) produce:

$$ \begin{array}{@{}rcl@{}} &&{}\frac{1}{\Delta t}\left\| \begin{bmatrix} \boldsymbol{\phi}_{{ u},{n+1}}^{h} \\ \boldsymbol{\phi}_{{ u},{n}}^{h}\quad \end{bmatrix}\right\|_{G}^{2} -\frac{1}{\Delta t}\left\| \begin{bmatrix} \boldsymbol{\phi}_{{ u},{n}}^{h}\quad\\ \boldsymbol{\phi}_{{ u},{n-1}}^{h} \end{bmatrix}\right\|_{G}^{2} +\frac{1}{4{\Delta} t}\left\|\boldsymbol{\phi}_{{ u},{n+1}}^{h}-2\boldsymbol{\phi}_{{ u},{n}}^{h}+\boldsymbol{\phi}_{{ u},{n-1}}^{h}\right\|_{F}^{2}\\ &&+Pr \|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{u}^{h})\|^{2} +Da^{-1}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|^{2}\\ &=&-PrRa((H_{n+\theta}({e_{T}^{h}})-NH_{n+\theta}({e_{S}^{h}})),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))+PrHa^{2}(F_{n+\theta}^{\varepsilon, \nu}(e_{u}^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))\textbf{e}_{2}\\ &&+({D}_{n+\theta}(\boldsymbol{\eta}_{{ u}}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))+Pr ({F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\eta}_{{ u}}), F_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{{ u}}^{h})) \\&&+Da^{-1}(F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{{ u}}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))+b^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))\\ &&-b^{*}({H}_{n+\theta}({ u}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))+({F}_{n+\theta}^{\varepsilon,\nu}(p-p^{h}),\nabla \cdot F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))\\ &&-\mathcal{E}_{1}({ u}_{n+\theta},T_{n+\theta},S_{n+\theta},F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})). \end{array} $$
(A.11)

Applying the Cauchy-Schwarz, Young’s inequalities, and Taylor series expansion with remainder and (A.7), the terms on the right hand side of (A.11) are bounded by:

$$ \begin{array}{@{}rcl@{}} |PrRa((H_{n+\theta}({e_{T}^{h}})-NH_{n+\theta}({e_{S}^{h}})),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))| &\leq&CPrRa^{2}\left( \|H_{n+\theta}(\eta_{T})\|^{2}+\|H_{n+\theta}({\phi_{T}^{h}})\|^{2}\right.\\ &&\left.+N^{2}(\|H_{n+\theta}(\eta_{S})\|^{2}+\|H_{n+\theta}({\phi_{S}^{h}})\|^{2})\right)\\ &&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}, \end{array} $$
(A.12)
$$ \begin{array}{@{}rcl@{}} PrHa^{2}|(F_{n+\theta}^{\varepsilon, \nu}(e_{{ u}}^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))\textbf{e}_{2}|&\leq&CPrHa^{4}\|F_{n+\theta}^{\varepsilon, \nu}(\boldsymbol{\eta}_{u})\|^{2}+PrHa^{2}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h})\|^{2}\\ &&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{u}^{h})\|^{2}, \end{array} $$
(A.13)

and

$$ \begin{array}{@{}rcl@{}} |({D}_{n+\theta}(\boldsymbol{\eta}_{{ u}}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))| & \leq & C{Pr^{-1}}\|{D}_{n+\theta}(\boldsymbol{\eta}_{{ u}})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|^{2}, \end{array} $$
(A.14)
$$ \begin{array}{@{}rcl@{}} Pr |({F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\eta}_{u}), F_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{u}^{h}))| & \leq & CPr\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\eta}_{u})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{u}^{h})\|^{2}, \end{array} $$
(A.15)
$$ \begin{array}{@{}rcl@{}} Da^{-1}|(F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))| & \leq & CDa^{-1}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{u})\|^{2}+\frac{Da^{-1}}{2}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h})\|^{2}, \end{array} $$
(A.16)
$$ \begin{array}{@{}rcl@{}} |({F}_{n+\theta}^{\varepsilon,\nu}(p-p^{h}),\nabla \cdot F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))| & \leq & C{Pr}^{-1}\|{F}_{n+\theta}^{\varepsilon,\nu}(p-p^{h})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{u}^{h})\|^{2}. \end{array} $$
(A.17)

Note that \(b^{*}({H}_{n+\theta }({ u}^{h}),{F}_{n+\theta }^{\varepsilon ,\nu }(\boldsymbol {\phi }_{{ u}}^{h}),F_{n+\theta }^{\varepsilon ,\nu }(\boldsymbol {\phi }_{{ u}}^{h}))=0\), then the nonlinear terms can be written as:

$$ \begin{array}{@{}rcl@{}} &&{}|-b^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))+b^{*}({H}_{n+\theta}({ u}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &\leq&|b^{*}({H}_{n+\theta}(\boldsymbol{\phi}_{{ u}}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|+|b^{*}({H}_{n+\theta}(\boldsymbol{\eta}_{{ u}}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &&+|b^{*}({H}_{n+\theta}({ u}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{{ u}}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|. \end{array} $$
(A.18)

For the terms on the right hand side of (A.18), we use (2.7) and Poincaré-Friedrichs’ inequality, which yields:

$$ \begin{array}{@{}rcl@{}} &&{}|b^{*}({H}_{n+\theta}(\boldsymbol{\phi}_{{ u}}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &\leq&\frac{1}{2}\left( \|{H}_{n+\theta}(\boldsymbol{\phi}_{{ u}}^{h})\|\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})\|_{\infty}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|+\|{H}_{n+\theta}(\boldsymbol{\phi}_{{ u}}^{h})\|\|{F}_{n+\theta}^{\varepsilon,\nu}({ u})\|_{\infty}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|\right)\\ &\leq&C{Pr}^{-1}\left( \|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})\|^{2}_{\infty}+\|{F}_{n+\theta}^{\varepsilon,\nu}({ u})\|^{2}_{\infty}\right)((\theta+1)^{2}\|\boldsymbol{\phi}_{{ u},n}^{h}\|^{2}+\theta^{2}\|\boldsymbol{\phi}_{{ u},n-1}^{h}\|^{2})+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2},\\ &&|b^{*}({H}_{n+\theta}(\boldsymbol{\eta}_{{ u}}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &\leq&C{Pr}^{-1}\|{H}_{n+\theta}(\nabla\boldsymbol{\eta}_{{ u}})\|^{2}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2},\\ &&|b^{*}({H}_{n+\theta}({ u}^{h}),{F}_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\eta}_{{ u}}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &\leq&C{Pr}^{-1}\|{H}_{n+\theta}(\nabla{ u}^{h})\|^{2}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\eta}_{{ u}})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}. \end{array} $$
(A.19)

We then bound the all terms of \(\mathcal {E}_{1}({ u}_{n+\theta },T_{n+\theta },S_{n+\theta },F_{n+\theta }^{\varepsilon ,\nu }(\boldsymbol {\phi }_{{ u}}^{h}))\) using Cauchy-Schwarz, Young’s inequality and Taylor series expansion with remainder. Then, one gets:

$$ \begin{array}{@{}rcl@{}} |({D}_{n+\theta}({ u})-{ u}_{t}(t_{n+\theta}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|&\leq&C{Pr}^{-1}\|{D}_{n+\theta}({ u})-{ u}_{t}(t_{n+\theta})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}\\ &\leq&C{Pr}^{-1}\theta^{6}{\Delta} t^{3}{\int}_{t_{n-1}}^{t_{n+1}}\|{ u}_{ttt}\|^{2}\mathrm{d} t\\ &&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}, \end{array} $$
(A.20)
$$ \begin{array}{@{}rcl@{}} Pr |({F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})-\nabla { u}(t_{n+\theta}),\nabla F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))|&\leq&CPr \|\nabla(\theta u_{n+1}+(1-\theta)u_{n}-u_{n+\theta})\|^{2}\\ &&+C{Pr}^{-1}\epsilon^{2}\theta^{2}\|\nabla ({ u}_{n+1}-2{ u}_{n}+{ u}_{n-1})\|^{2}\\ &&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}, \end{array} $$
(A.21)
$$ \begin{array}{@{}rcl@{}} Da^{-1}|(F_{n+\theta}^{\varepsilon,\nu}(u)-u(t_{n+\theta}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h}))|&\leq&\|F_{n+\theta}^{\varepsilon,\nu}(u)-u(t_{n+\theta})\|^{2}+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{u}^{h})\|^{2}, \end{array} $$
(A.22)
$$ \begin{array}{@{}rcl@{}} |({F}_{n+\theta}^{\varepsilon,\nu}(p)- p(t_{n+\theta}),\nabla \cdot F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|&\leq&C{Pr}^{-1}\|{F}_{n+\theta}^{\varepsilon,\nu}(p)- p(t_{n+\theta})\|^{2}\\ &&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{u}^{h})\|^{2}. \end{array} $$
(A.23)

To estimate remaining nonlinear terms in (A.4), we use (2.5)–(2.9) and Taylor series expansion with remainder as:

$$ \begin{array}{@{}rcl@{}} &&{}|b^{*}({H}_{n+\theta}({ u}),{F}_{n+\theta}^{\varepsilon,\nu}({ u}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))-b^{*}({ u}(t_{n+\theta}),{ u}(t_{n+\theta}),{ v}^{h})|\\ &\leq&C{Pr}^{-1}\left( \theta^{2}(1+\theta^{2})\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla{ u})\|^{2}+(\theta^{2}(1-\theta^{2})+\epsilon^{2}\theta^{2})\|\nabla { u}_{n+\theta}\|^{2}\right){\Delta} t^{3}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla u_{tt}\|^{2} \mathrm{d} t\\&&+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{u}^{h})\|^{2}. \end{array} $$
(A.24)

The other terms on the right hand side of (A.4) can be bounded as:

$$ \begin{array}{@{}rcl@{}} &&{}|PrRa(T(t_{n+\theta})-H_{n+\theta}(T^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|+|NPrRa(S(t_{n+\theta})-H_{n+\theta}(S^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))|\\ &&+|PrHa^{2}({ u}(t_{n+\theta})-F_{n+\theta}^{\varepsilon, \nu}({ u}^{h}),F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h}))\textbf{e}|\\ &\leq&CPr\theta^{2}(1+\theta)^{2}{\Delta} t^{3}\left( Ra^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla T_{tt}\|^{2} \mathrm{d} t+N^{2}Ra^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla S_{tt}\|^{2} \mathrm{d} t \right.\\ &&\left.+Ha^{4}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla { u}_{tt}\|^{2} \mathrm{d} t\right)+\frac{Pr}{28}\|F_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\phi}_{{ u}}^{h})\|^{2}. \end{array} $$
(A.25)

Inserting all bounds in (A.11) and multiplying by Δt, we get:

$$ \begin{array}{@{}rcl@{}} &&\left\| \begin{bmatrix} \boldsymbol{\phi}_{{ u},{n+1}}^{h} \\ \boldsymbol{\phi}_{{ u},{n}}^{h}\quad \end{bmatrix}\right\|_{G}^{2} -\left\| \begin{bmatrix} \boldsymbol{\phi}_{{ u},{n}}^{h}\quad\\ \boldsymbol{\phi}_{{ u},{n-1}}^{h} \end{bmatrix}\right\|_{G}^{2} +\frac{1}{4}\left\|\boldsymbol{\phi}_{{ u},{n+1}}^{h}-2\boldsymbol{\phi}_{{ u},{n}}^{h}+\boldsymbol{\phi}_{{ u},{n-1}}^{h}\right\|_{F}^{2}\\&&+\frac{Pr{\Delta} t}{2} \|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{u}^{h})\|^{2} +\frac{Da^{-1}{\Delta} t}{2}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|^{2} \\ &\leq&C{\Delta} t\left( \|H_{n+\theta}(\eta_{T})\|^{2}+\|NH_{n+\theta}(\eta_{S})\|^{2}+PrHa^{2}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|^{2}+(1+Da^{-1})\|F_{n+\theta}^{\varepsilon, \nu}(\boldsymbol{\eta}_{u})\|^{2}\right.\\ &&+{Pr}^{-1}\theta^{6}{\Delta} t^{3}{\int}_{t_{n-1}}^{t_{n+1}}\|{ u}_{ttt}\|^{2}\mathrm{d} t+Pr \|\nabla(\theta{ u}_{n+1}+(1-\theta){ u}_{n}-{ u}_{n+\theta})\|^{2}\\ &&+{Pr}^{-1}\epsilon^{2}\theta^{2}\|\nabla ({ u}_{n+1}-2{ u}_{n}+{ u}_{n-1})\|^{2}+\|{D}_{n+\theta}(\boldsymbol{\eta}_{{ u}})\|^{2}+Pr\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\eta}_{u})\|^{2}\\ &&+\|{H}_{n+\theta}(\nabla\boldsymbol{\eta}_{{ u}})\|^{2}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla{ u})\|^{2}+\|{H}_{n+\theta}(\nabla{ u}^{h})\|^{2}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla\boldsymbol{\eta}_{{ u}})\|^{2}\\ &&+\|F_{n+\theta}^{\varepsilon,\nu}({ u})-{ u}(t_{n+\theta})\|^{2}+\theta^{2}(1+\theta^{2}){\Delta} t^{3}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla{ u})\|^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla{ u}_{tt}\|^{2} \mathrm{d} t\\ &&+(\theta^{2}(1-\theta^{2})+\epsilon^{2}\theta^{2}){\Delta} t^{3}\|\nabla { u}_{n+\theta}\|^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla{ u}_{tt}\|^{2} \mathrm{d} t+\|{F}_{n+\theta}^{\varepsilon,\nu}(p-p^{h})\|^{2}\\ &&+Pr\theta^{2}(1+\theta)^{2}{\Delta} t^{3}\left( Ra^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla T_{tt}\|^{2} \mathrm{d} t+N^{2}Ra^{2}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla S_{tt}\|^{2} \mathrm{d} t\right.\\ &&\left.\left.+Ha^{4}{\int}_{t_{n-1}}^{t_{n+1}}\|\nabla { u}_{tt}\|^{2} \mathrm{d} t\right)\right)+C\nu^{-1}{\Delta} t\left( \|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})\|^{2}_{\infty}+\|{F}_{n+\theta}^{\varepsilon,\nu}({ u})\|^{2}_{\infty}\right)\\ &&\times((\theta+1)^{2}\|\boldsymbol{\phi}_{{ u},n}^{h}\|^{2}+\theta^{2}\|\boldsymbol{\phi}_{{ u},n-1}^{h}\|^{2})+C{\Delta} t(\|H_{n+\theta}({\phi_{T}^{h}})\|^{2}+\|NH_{n+\theta}({\phi_{S}^{h}})\|^{2}). \end{array} $$
(A.26)

Using (2.11) and (2.17), summing over the time steps from n = 0 to n = M − 1 and utilizing induction, one gets:

$$ \begin{array}{@{}rcl@{}} &&{}\left\|\boldsymbol{\phi}_{{ u},{M}}^{h}\right\|^{2}+ \frac{1}{2\theta+1}\sum\limits_{n=0}^{M-1}\left\|\boldsymbol{\phi}_{{ u},{n+1}}^{h}-2\boldsymbol{\phi}_{{ u},{n}}^{h}+\boldsymbol{\phi}_{{ u},{n-1}}^{h}\right\|_{F}^{2}\\&& +\frac{2Pr{\Delta} t}{2\theta+1} \sum\limits_{n=0}^{M-1}\|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla \boldsymbol{\phi}_{{ u}}^{h})\|^{2}+\frac{2Da^{-1}{\Delta} t}{2\theta+1}\sum\limits_{n=0}^{M-1}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{u}^{h})\|^{2} \\ &\leq&\left( \frac{2\theta-1}{2\theta+1}\right)^{M}\left\|\boldsymbol{\phi}_{{ u},{0}}^{h}\right\|^{2}+2\left\| \begin{bmatrix} \boldsymbol{\phi}_{{ u},{0}}^{h}\quad\\ \boldsymbol{\phi}_{{ u},{-1}}^{h} \end{bmatrix}\right\|_{G}^{2}+C(h^{2k}+{\Delta} t^{4})\\ &&+2Pr^{-1}{\Delta} t\sum\limits_{n=0}^{M-1}\left( \|{F}_{n+\theta}^{\varepsilon,\nu}(\nabla { u})\|^{2}_{\infty}+\|{F}_{n+\theta}^{\varepsilon,\nu}({ u})\|^{2}_{\infty}\right)((\theta+1)^{2}\|\boldsymbol{\phi}_{{ u},n}^{h}\|^{2}+\theta^{2}\|\boldsymbol{\phi}_{{ u},n-1}^{h}\|^{2}) \\&&+PrHa^{2}{\Delta} t\sum\limits_{n=0}^{M-1}\|F_{n+\theta}^{\varepsilon,\nu}(\boldsymbol{\phi}_{{ u}}^{h})\|^{2}+2{\Delta} t\sum\limits_{n=0}^{M-1}(\|H_{n+\theta}({\phi_{T}^{h}})\|^{2}+2\|NH_{n+\theta}({\phi_{S}^{h}})\|^{2}). \end{array} $$
(A.27)

In a similar manner, setting \(\chi ^{h}={F}_{n+\theta }^{\varepsilon _{1},\gamma }({\phi _{T}^{h}})\) in (A.9) and \({\Phi }^{h}={F}_{n+\theta }^{\varepsilon _{2},Le^{-1}}({\phi _{S}^{h}})\) in (A.10) and using similar arguments of (A.27) give the error estimation for the temperature and the concentration as:

$$ \begin{array}{@{}rcl@{}} &&{}\|{\phi}_{T,{M}}^{h}\|^{2} +\frac{1}{2\theta+1}\sum\limits_{n=0}^{M-1}\left\|\phi_{T,{n+1}}^{h}-2\phi_{T,{n}}^{h}+\phi_{T,{n-1}}^{h}\right\|_{F}^{2}+\frac{2{\Delta} t}{2\theta+1}\sum\limits_{n=0}^{M-1}\|{F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla {\phi_{T}^{h}})\|^{2}\\&\leq&\left( \frac{2\theta-1}{2\theta+1}\right)^{M}\left\|{{\phi}_{T,{0}}^{h}}\right\|^{2}+2\left\|{ \begin{bmatrix} {\phi}_{T,{0}}^{h}\quad\\ {\phi}_{T,{-1}}^{h} \end{bmatrix}}\right\|_{G}^{2}+C(h^{2k}+{\Delta} t^{4})\\&&+C{\Delta} t\sum\limits_{n=0}^{M-1}\left( \|{F}_{n+\theta}^{\varepsilon_{1},\gamma}(\nabla T)\|^{2}_{\infty}+\|{F}_{n+\theta}^{\varepsilon_{1},\gamma}(T)\|^{2}_{\infty}\right)((\theta+1)^{2}\|{\phi}_{u,{n}}^{h}\|^{2}+\theta^{2}\|{\phi}_{u,{n-1}}^{h}\|^{2}), \end{array} $$
(A.28)
$$ \begin{array}{@{}rcl@{}} &&{}\|{\phi}_{S,{M}}^{h}\|^{2} +\frac{1}{2\theta+1}\sum\limits_{n=0}^{M-1}\left\|\phi_{S,{n+1}}^{h}-2\phi_{S,{n}}^{h}+\phi_{S,{n-1}}^{h}\right\|_{F}^{2}+\frac{2Le^{-1}{\Delta} t}{2\theta+1}\sum\limits_{n=0}^{M-1}\|{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla {\phi_{S}^{h}})\|^{2}\\&\leq&\left( \frac{2\theta-1}{2\theta+1}\right)^{M}\left\|{{\phi}_{S,{0}}^{h}}\right\|^{2}+2\left\| { \begin{bmatrix} {\phi}_{S,{0}}^{h}\quad\\ {\phi}_{S,{-1}}^{h} \end{bmatrix}}\right\|_{G}^{2}+C(h^{2k}+{\Delta} t^{4})\\&&+C{\Delta} t\sum\limits_{n=0}^{M-1}\left( \|{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(\nabla S)\|^{2}_{\infty}+\|{F}_{n+\theta}^{\varepsilon_{2},Le^{-1}}(S)\|^{2}_{\infty}\right)((\theta+1)^{2}\|{\phi}_{u,{n}}^{h}\|^{2}\\&&+\theta^{2}\|{\phi}_{u,{n-1}}^{h}\|^{2}). \end{array} $$
(A.29)

Summing (A.27), (A.28) and (A.29), applying discrete Gronwall inequality (2.19) and triangle inequality produce the stated result. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibik, A., Eroglu, F.G. & Kaya, S. On the performance of curvature stabilization time stepping methods for double-diffusive natural convection flows in the presence of magnetic field. Numer Algor 88, 475–498 (2021). https://doi.org/10.1007/s11075-020-01046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01046-w

Keywords

Navigation