Skip to main content
Log in

A finite-step construction of totally nonnegative matrices with specified eigenvalues

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Matrices where all minors are nonnegative are said to be totally nonnegative (TN) matrices. In the case of banded TN matrices, which can be expressed by products of several bidiagonal TN matrices, Fukuda et al. (Annal. Mat. Pura Appl. 192, 423–445, 2013) discussed the eigenvalue problem from the viewpoint of the discrete hungry Toda (dhToda) equation. The dhToda equation is a discrete integrable system associated with box and ball systems. In this paper, we consider an inverse eigenvalue problem for such banded TN matrices by examining the properties of the dhToda equation. This problem is a real-valued nonnegative inverse eigenvalue problem. First, we show the determinant solution to the dhToda equation with suitable boundary conditions. Next, we clarify the relationship between the characteristic polynomials of the banded TN matrices and the determinant solution. Finally, taking this relationship into account, we design a finite-step procedure for constructing banded TN matrices with specified eigenvalues. We also present an example to demonstrate this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaiwa, K., Iwasaki, M., Kondo, K., Nakamura, Y.: A tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues. Pacific. J. Math. Indust. 6 (2014)

  2. Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)

    Article  MATH  Google Scholar 

  3. de Boor, C., Golub, G.H.: The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra Appl. 21, 245–260 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chu, M.T., Golub, G.H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications. Oxford University Press, New York (2005)

    Book  Google Scholar 

  5. Cryer, C.W.: Some properties of totally positive matrices. Linear Algebra Appl. 15, 1–25 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fallat, S.: Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly 108, 697–712 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  8. Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: Error analysis for matrix eigenvalue algorithm based on the discrete hungry Toda equation. Numer. Algor. 61, 243–260 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y.: Integrable discrete hungry systems and their related matrix eigenvalues. Annal. Mat. Pura Appl. 192, 423–445 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y.: On a shifted LR transformation derived from the discrete hungry Toda equation. Monat. Math. 170, 11–26 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gasca, M., Micchelli, C.A. (eds.): Total positivity and its applications. Mathematics Applied, vol. 359. Kluwer Academic, Dordrecht (1996)

  12. Gladwell, G.M.L.: Inner totally positive matrices. Linear Algebra Appl. 393, 179–195 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. The GNU Multiple precision arithmetic library, https://gmplib.org

  14. The GNU MPFR library, http://www.mpfr.org

  15. Gragg, W.B., Harrod, W.J.: The numerically stable reconstruction of Jacobi matrices from spectral data. Numer. Math. 44, 317–335 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley, New York (1974)

    MATH  Google Scholar 

  17. Hirota, R.: Nonlinear partial difference equation. II. Discrete-Time Toda equation. J. Phys. Soc. Japan 46, 2074–2078 (1977)

    Article  MathSciNet  Google Scholar 

  18. Karlin, S.: Total Positivity, vol. 1. Stanford University Press, Stanford (1968)

    Google Scholar 

  19. Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  20. Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P., 2nd ed.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  21. Symes. W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D 4, 275–280 (1982)

    Article  MATH  Google Scholar 

  22. Tokihiro, T., Nagai, A., Satsuma, J.: Proof of solitonical nature of box and ball system by the means of inverse ultra-discretization. Inverse Probl. 15, 1639–1662 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanae Akaiwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akaiwa, K., Nakamura, Y., Iwasaki, M. et al. A finite-step construction of totally nonnegative matrices with specified eigenvalues. Numer Algor 70, 469–484 (2015). https://doi.org/10.1007/s11075-015-9957-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9957-x

Keywords

Mathematical Subject Classifications (2010)

Navigation