Skip to main content
Log in

Newton-type methods for simultaneous matrix diagonalization

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper proposes a Newton-type method to solve numerically the eigenproblem of several diagonalizable matrices, which pairwise commute. A classical result states that these matrices are simultaneously diagonalizable. From a suitable system of equations associated to this problem, we construct a sequence that converges quadratically towards the solution. This construction is not based on the resolution of a linear system as is the case in the classical Newton method. Moreover, we provide a theoretical analysis of this construction and exhibit a condition to get a quadratic convergence. We also propose numerical experiments, which illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Gallivan, K.A.: Joint diagonalization on the oblique manifold for independent component analysis. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, volume 5, pages V–V, (2006)

  2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  3. Afsari, B.: Sensitivity analysis for the problem of matrix joint diagonalization. SIAM J. Matrix Anal. Appl. 30, 1148–1171 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andruchow, E., Larotonda, G., Recht, L., Varela, A.: The left invariant metric in the general linear group. J. Geom. Phys. 86, 241–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchard, F., Afsari, B., Malick, J., Congedo, M.: Approximate joint diagonalization with Riemannian optimization on the general linear group. SIAM J. Matrix Anal. Appl. 41(1), 152–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bro, R.: Parafac tutorial and applications. Chemom. Intell. Lab. Syst. 38(2), 149–171 (1997)

    Article  Google Scholar 

  7. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A chart of numerical methods for structured eigenvalue problems. SIAM J. Matrix Anal. Appl. 13(2), 419–453 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 14(4), 927–949 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory, vol. 315. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  10. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proc.-F 140, 362–370 (1993)

    Google Scholar 

  11. Cardoso, J.-F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  13. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  14. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications, 1st edn. Academic Press Inc., USA (2010)

    Google Scholar 

  15. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry. Number 185 in Graduate Texts in Mathematics, 2nd edn. Springer, New York (2005)

    Google Scholar 

  16. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douglas, S.C.: Self-stabilized gradient algorithms for blind source separation with orthogonality constraints. IEEE Trans. Neural Netw. 11(6), 1490–1497 (2000)

    Article  Google Scholar 

  18. Elkadi, M., Mourrain, B.: Introduction à la résolution des systèmes polynomiaux. Mathématiques et Applications, vol. 59. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  19. Flury, B.D., Neuenschwander, B.E.: Simultaneous diagonalization algorithms with applications in multivariate statistics. In: Approximation and Computation: A Festschrift in Honor of Walter Gautschi, pp. 179–205. Springer, Birkhäuser, Boston, MA (1994)

  20. Flury, B.N., Gautschi, W.: An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM J. Sci. Stat. Comput. 7(1), 169–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Françoise, C.: Simultaneous newton’s iteration for the eigenproblem. Computing 5, 67–74 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Hoeven, J.V.D., Mourrain, B.: Efficient certification of numeric solutions to eigenproblems. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds.) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science, vol. 10693. Springer, Cham (2017)

  23. Horn, R.A., Charles, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  24. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  25. Jiang, R., Li, D.: Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming. SIAM J. Optim. 26(3), 1649–1668 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Joho, M., Rahbar, K.: Joint diagonalization of correlation matrices by using Newton methods with application to blind signal separation. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, 403–407 (2002)

  27. Joho, M.: Newton method for joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl. 30(3), 1205–1218 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Joho, M., Rahbar, K.: Joint diagonalization of correlation matrices by using newton methods with application to blind signal separation. In: Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pp. 403–407. IEEE, (2002)

  29. Jolliffe, I.: Principal Component Analysis, pp. 1094–1096. Springer Berlin Heidelberg, Berlin (2011)

    Google Scholar 

  30. Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32(2), 115–122 (1987)

    Article  MATH  Google Scholar 

  31. Luciani, X., Albera, L.: Canonical polyadic decomposition based on joint eigenvalue decomposition. Chemom. Intell. Lab. Syst. 132, 152–167 (2014)

    Article  Google Scholar 

  32. Mahony, R.E.: The constrained newton method on a lie group and the symmetric eigenvalue problem. Linear Algebra Appl. 248, 67–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mesloub, A., Belouchrani, A., Abed-Meraim, K.: Efficient and stable joint eigenvalue decomposition based on generalized givens rotations. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 1247–1251. IEEE, (2018)

  34. Nikpour, M., Manton, J., Hori, G.: Algorithms on the Stiefel manifold for joint diagonalisation. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2, II–1481–II–1484 (2002)

  35. Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomput. 67, 106–135 (2005)

    Article  Google Scholar 

  36. Rahbar, K., Reilly, J.P.: Geometric optimization methods for blind source separation of signals. In: in Proc. ICA, pp. 375–380, (2000)

  37. Rosser, B., Lanczos, C., Hestenes, M.R., Karush, W.: Separation of close eigen-values of a real symmetric matrix. J. Res. Natl. Bur. Stand. 47, 291–297 (1950)

    Article  Google Scholar 

  38. Sato, H.: Riemannian newton-type methods for joint diagonalization on the stiefel manifold with application to independent component analysis. Optimization 66(12), 2211–2231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sidiropoulos, N.D., Bro, R.: On the uniqueness of multilinear decomposition of n-way arrays. J. Chemom. 14(3), 229–239 (2000)

    Article  Google Scholar 

  40. Sidiropoulos, N.D., Lathauwer, L.D., Xiao, F., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sørensen, M., De Lathauwer, L.: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition-part i: model and identifiability. IEEE Trans. Signal Process. 65(2), 517–527 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sørensen, M., De Lathauwer, L.: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition-part ii: algorithm and multirate sampling. IEEE Trans. Signal Process. 65(2), 528–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sørensen, M., Domanov, I., De Lathauwer, L.: Coupled canonical polyadic decompositions and multiple shift invariance in array processing. IEEE Trans. Signal Process. 66(14), 3665–3680 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sørensen, M., Van Eeghem, F., De Lathauwer, L.: Blind multichannel deconvolution and convolutive extensions of canonical polyadic and block term decompositions. IEEE Trans. Signal Process. 65(15), 4132–4145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. van der Hoeven, J., Yakoubsohn, J.-C..: Certified singular value decomposition. Technical Report HAL 01941987, (2018)

  46. Vollgraf, R., Obermayer, K.: Quadratic optimization for simultaneous matrix diagonalization. IEEE Trans. Signal Process. 54(9), 3270–3278 (2006)

    Article  MATH  Google Scholar 

  47. Wang, W., Sanei, S., Chambers, J.: Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources. In: IEEE Transactions on Signal Processing, vol.53, pp. 1654–1669 (2005)

  48. Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process. 50(7), 1545–1553 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Khouja.

Ethics declarations

Conflict of Interest

The authors declare no conflicting interest that is directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khouja, R., Mourrain, B. & Yakoubsohn, JC. Newton-type methods for simultaneous matrix diagonalization. Calcolo 59, 38 (2022). https://doi.org/10.1007/s10092-022-00484-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00484-3

Keywords

Mathematics Subject Classification

Navigation