Skip to main content
Log in

An asymptotic expansion of cable–flexible support coupled nonlinear vibrations using boundary modulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to cable–flexible support coupled nonlinear vibrations using a asymptotic boundary modulation technique. Asymptotic/reduced cable–support coupled nonlinear models are established first using the boundary modulation concept, after a proper scaling analysis at the cable–support interface. The cable and the support turn out to be coupled through cable-induced and support-induced boundary modulations in a rational way, which are derived analytically by asymptotic approximations and multiple scale expansions. Based upon the reduced models, two prototypical kinds of cable–support coupled dynamics are fully investigated, i.e., one with the support excited and the other with the cable excited. Essentially, they correspond to refined versions of two typical degenerate cable dynamics, i.e., cables excited externally with fixed supports and cables excited by ideal moving supports. Applying numerical continuation algorithms to the reduced models, cable–support typical coupled frequency response diagrams are constructed, with their stabilities, bifurcation characteristics, and the coupling’s effects on the cable determined. All these approximate analytical results are verified by the numerical results from the original full cable–support system using the finite difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cables, part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Nonlinear vibrations of suspended cables–Part III: Random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2005)

    Article  Google Scholar 

  3. Rega, G., Alaggio, R.: Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system. Int. J Solids Struct. 38, 2049–2068 (2001)

    Article  MATH  Google Scholar 

  4. Rega, G., Alaggio, R.: Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-Hopf bifurcation. J. Sound Vib. 322, 581–611 (2009)

    Article  Google Scholar 

  5. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc R Soc Londn A 341, 299–315 (1974)

    Article  Google Scholar 

  6. Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)

    Google Scholar 

  7. Triantafyllou, M.S.: Dynamics of cables, towing cables, and mooring systems. Shock Vib. Dig. 23, 3–8 (1991)

    Article  Google Scholar 

  8. Hagedorn, P., Schafer, B.: On non-linear free vibration of an elastic cables. Int. J. Non-Linear Mech. 15, 333–339 (1980)

    Article  MATH  Google Scholar 

  9. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  10. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  11. Benedettini, F., Rega, G., Vestroni, F.: Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21, 38–46 (1986)

    Article  MATH  Google Scholar 

  12. Rao, G.V., Iyengar, R.N.: Internal resonance and non-linear response of a cable under periodic excitation. J. Sound Vib. 149, 25–41 (1991)

    Article  Google Scholar 

  13. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  14. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I. Nonlinear Dyn. 48, 231–252 (2007)

    Article  MATH  Google Scholar 

  15. Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables: discretization versus direct treatment. Nonlinear Dyn. 8, 65–83 (1995)

    Article  Google Scholar 

  16. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)

    Article  MATH  Google Scholar 

  17. Nayfeh, A.H., Arafat, A.H., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, Y.Y., Wang, L.H., Chen, D.L., Jiang, L.Z.: Nonlinear dynamic analysis of the two-dimensional simplified model of an elastic cable. J. Sound Vib. 255, 43–59 (2002)

    Article  Google Scholar 

  19. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one dimensional systems. Int. J. Non-Linear Mech. 38, 851–871 (2003)

    Article  MATH  Google Scholar 

  20. Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)

    Article  Google Scholar 

  21. Nayfeh, A.H.: Non-linear Interact. Wiley-Inter science, New York (2000)

    Google Scholar 

  22. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  23. Cai, Y., Chen, S.S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. 120, 1786–1802 (1993)

    Article  Google Scholar 

  24. Lilien, J.L., PintodaCosta, A.: Vibration amplitudes caused by parametric excitation of cable stayed structure. J. Sound Vib. 174, 69–90 (1994)

    Article  MATH  Google Scholar 

  25. Pintoda Costa, A., Martins, J.A., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech. 122, 613–622 (1996)

    Article  Google Scholar 

  26. Berlioz, A., Lamarque, C.H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279, 619–639 (2005)

    Article  Google Scholar 

  27. Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)

    Article  Google Scholar 

  28. Wang, L.H., Zhao, Y.Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  29. Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Macdonald, J.H.G.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318, 565–579 (2008)

    Article  Google Scholar 

  30. Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J., Wagg, D.J.: Generalized modal stability of inclined cables subjected to support excitations. J. Sound Vib. 329, 4515–4533 (2010)

    Article  Google Scholar 

  31. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2012)

  32. Chen, H., Zuo, D., Zhang, Z., Xu, Q.: Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations. Nonlinear Dyn. 62, 623–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zulli, D., Luongo, A.: Nonlinear Energy Sink to control vibrations of an internally nonresonant elastic string. Meccanica 50, 781–794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rega, G., Luongo, A.: Natural vibrations of suspended cables with flexible supports. Comput. Struct. 12, 65–75 (1980)

    Article  MATH  Google Scholar 

  35. Warnitchaia, P., Fujinob, Y., Susumpowc, T.: A non-linear dynamic model for cables and its application to cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  36. Gattulli, V., Morandini, M., Paolone, A.: A parametric analytical model for non-linear dynamics in cable-stayed beam. Earthq. Eng. Struct. Dyn. 31(6), 1281–1300 (2002)

    Article  Google Scholar 

  37. Caetano, E., Cunha, A., Taylor, C.A.: Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge. Part II: Seismic response. Earthq. Eng. Struct. Dyn. 29(4), 499–521 (2000)

    Article  Google Scholar 

  38. Li, H.N., Shi, W.L., Guo, X.W., Lian, G.J.: Simplified models and experimental verification for coupled transmission tower-line system to seismic excitations. J. Sound Vib. 286, 569–585 (2005)

    Article  Google Scholar 

  39. Caetano, E., Cunha, A., Gattulli, V., Lepidi, M.: Cable-deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modelling. Struct. Control Health Monit. 15(3), 237–264 (2008)

    Article  Google Scholar 

  40. Guo, T.D., Kang, H.J., Wang, L.H., Zhao, Y.Y.: Cable’s mode interactions under vertical support motions: boundary resonant modulation. Nonlinear Dyn. 84(3), 1259–1279 (2016). doi:10.1007/s11071-015-2565-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  42. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1994)

    MATH  Google Scholar 

  43. Ermentrout B.: Simulating, Analyzing, and Animating Dynamical Systems-A Guide to XPP-AUTO for Researchers and Students. SIAM, Philadelphia (2002)

  44. Doedel E.: Lecture Notes on Numerical Analysis of Nonlinear Equations. Last Modified (2010)

Download references

Acknowledgements

The authors appreciate all the efforts from Prof. Rega, Sapienza University of Rome, Italy, for the valuable discussions and constructive suggestions. This study is funded by National Science Foundation of China under Grant Nos 11502076 and No. 11572117, and Program for Supporting Young Investigators, Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Appendices

Appendix 1

Suspended cable’s linear modal analysis can be found in reference [5]. We restrict our attention to cable’s in-plane symmetric modes in this paper, and these modes are given by

$$\begin{aligned}&\phi _i \left( x \right) =c_i \left[ {1-\tan \left( {\frac{\omega _i }{2}} \right) \sin \omega _i x-\cos \omega _i x} \right] ,\nonumber \\&\quad i=1,3,5\cdots \end{aligned}$$
(57)

where \(c_{\mathrm{{i}}}\) is the normalization constants. And the associated eigenfrequencies are determined by

$$\begin{aligned} \frac{1}{2}\omega _i -\tan \left( {\frac{1}{2}\omega _i } \right) -\frac{1}{2\lambda ^{2}}\omega _i^3 =0 \end{aligned}$$
(58)

where \(\lambda ^{2}=EA/mgl(8b/l)^{3 }\) is the elasto-geometric parameter. The above nonlinear transcendental equations can be solved by the Newton–Raphson method.

The linear and nonlinear operators in cable’s dynamic equations, i.e., Eq. (11), are defined as

$$\begin{aligned} L\left[ w \right]= & {} -{w}''-\alpha {y}''\int _0^1 {\left( {{y}'{w}'} \right) } dx,\quad \nonumber \\ N_2 \left[ w \right]= & {} \alpha {w}''\int _0^1 {\left( {{y}'{w}'} \right) } dx+\alpha {y}''\int _0^1 {\left( {{{w}'^{2}}/2} \right) } dx,\nonumber \\ N_3 \left[ w \right]= & {} \alpha {w}''\int _0^1 {\left( {{{w}'^{2}}/2} \right) } dx \end{aligned}$$
(59)

The cubic nonlinear terms in Eq. (15) are defined as

$$\begin{aligned}&N_3 \left[ {w_1 } \right] =\alpha {w}''_1 \int _0^1 {\left( {{{w'}_1^{2}}/2} \right) } dx \nonumber \\&N_3 \left[ {w_1 ,w_2 } \right] =\alpha {w}''_1 \int _0^1 {\left( {{y}'{w}'_2 } \right) } dx\nonumber \\&\quad +\,\alpha {y}''\int _0^1 {\left( {{w}'_1 {w}'_2 } \right) } dx +\,\alpha {w}''_2 \int _0^1 {\left( {{y}'{w}'_1 } \right) } dx \end{aligned}$$
(60)

Appendix 2

The second-order shape functions in Eq. (19), Eq. (51), and Eq. (55) are illustrated in Fig. 21. They are governed by the following boundary value problem (BVP)

$$\begin{aligned}&4\omega _n^2 \varPsi _1 \left( x \right) +\varPsi _1 ^{\prime \prime }+\alpha {y}''\int _0^1 {{y}' \varPsi _1 ^{\prime }} dx\nonumber \\&={-\alpha }/2\left\langle {{\phi }'_1 ,{\phi }'_1 \;} \right\rangle {y}'' -\alpha \left\langle {{y}',{\phi }'_1 \;} \right\rangle {\phi }''_1 \end{aligned}$$
(61)
$$\begin{aligned}&\varPsi _2 ^{\prime \prime }+\alpha {y}''\int _0^1 {{y}' \varPsi _2 ^{\prime }} dx={-\alpha }/2\left\langle {{\phi }'_1 ,{\phi }'_1 \;} \right\rangle {y}''\nonumber \\&\qquad -\,\alpha \left\langle {{y}',{\phi }'_1 \;} \right\rangle {\phi }''_1 \end{aligned}$$
(62)

with boundary conditions \(\varPsi _{\mathrm{{k}}}(0)= \varPsi _{k}(1)=0\), \(k=1,2\).

Fig. 21
figure 21

Second-order shape functions \(\varPsi _{1}(x)\) and \(\varPsi _{2}(x)\) a for cable’s symmetric dynamics, b for cable’s anti-symmetric dynamics

Appendix 3

To validate our reduced models, numerical full/discrete cable–support coupled models are derived by using the finite difference method. Briefly, using the second-order finite difference scheme,

$$\begin{aligned} \frac{\partial \left( \right) }{\partial x}\approx & {} \frac{\left( \right) _{i+1} -\left( \right) _{i-1} }{2\Delta x},\nonumber \\ \frac{\partial ^{2}\left( \right) }{\partial x^{2}}\approx & {} \frac{\left( \right) _{i+1} -2\left( \right) _i +\left( \right) _{i-1} }{\Delta x^{2}}, \nonumber \\ \frac{\partial \left( \right) }{\partial t}\approx & {} \frac{\left( \right) _{j+1} -\left( \right) _{j-1} }{2\Delta t},\nonumber \\ \frac{\partial ^{2}\left( \right) }{\partial t^{2}}\approx & {} \frac{\left( \right) _{j+1} -2\left( \right) _j +\left( \right) _{j-1} }{\Delta t^{2}} \end{aligned}$$
(63)

The cable dynamics in Eq. (1) is discretized as

$$\begin{aligned} w_{i,j+1}= & {} \frac{1}{\left( {1+c\Delta t} \right) \Delta x^{2}}\left\{ \left( {1+\alpha S\Delta t^{2}} \right) w_{i-1,j}\right. \nonumber \\&\left. -\,\left( {1-c\Delta t} \right) \Delta x^{2}w_{i,j-1} \right. \nonumber \\&+\,\left( {2\Delta x^{2}-2\Delta t^{2}-2\alpha S\Delta t^{2}} \right) w_{i,j} \nonumber \\&+\,\left( {\Delta t^{2}+\alpha S\Delta t^{2}} \right) w_{i+1,j} \nonumber \\&-\,8\alpha fS\Delta t^{2}\Delta x^{2}\nonumber \\&\left. +\,F_c \left( {i\Delta x} \right) \cos \left( {\Omega j\Delta t} \right) \Delta t^{2}\Delta x^{2} \right\} \end{aligned}$$
(64)

and the support dynamics in Eq. (3) is discretized as

(65)

where \(\Delta x\), \(\Delta t\) are space/time steps, and \(x_i =i\Delta x,\;t_j =j \Delta t\) are the discrete grids for time marching. The distributed excitation amplitude \(F_c \) (in physics space) is related to the modal excitation amplitude in Eq. (41) by \(f_c =\left\langle {F_c \left( x \right) ,\phi _n } \right\rangle \).

The integral term in the cable equation (64), i.e., S, is obtained by the Simpson’s integral rule

$$\begin{aligned} S= & {} \int _0^1 {\left( {{y}'{w}'+\frac{1}{2}{w}'^{2}} \right) dx} \approx \frac{\Delta x}{3}\nonumber \\&\times \left\{ s_0 +\,2\sum _{i=1}^{n/2-1} {s_{2i} } +4\sum _{i=1}^{n/2} {s_{2i-1} } +s_n \right\} \nonumber \\ s_i\triangleq & {} 4f\left( {1-2\Delta x i} \right) \frac{w_{i+1,j} -w_{i-1,j} }{2\Delta x}\nonumber \\&+\,\frac{1}{2}\left( {\frac{w_{i+1,j} -w_{i-1,j} }{2\Delta x}} \right) ,\quad i=0,1,\cdots n \end{aligned}$$
(66)

The support-induced boundary excitation, i.e., Eq. (2), is discretized as

$$\begin{aligned} w_{0,j} =0,\quad w_{n,j} =-z\left( {t_j } \right) ,\quad t_j =j \Delta t \end{aligned}$$
(67)

and the dynamic tension \(T_\mathrm{{d}} \left( {t_j } \right) \) in Eq. (65) is calculated by

$$\begin{aligned} T_d \left( {t_j } \right)= & {} \left. {{w}'\left( 1 \right) } \right| _{t=t_j } +\left( {y^{\prime }\left( 1 \right) +\left. {{w}'\left( 1 \right) } \right| _{t=t_j } } \right) \nonumber \\&\times \,\alpha \int _0^1 {\left( {y^{\prime }{w}'+\frac{1}{2}{w}'^{2}} \right) dx} \nonumber \\= & {} \frac{3w_{N,j} -4w_{N-1,j} +w_{N-2,j} }{2\Delta x}\\&+\,\left( {-4f+\frac{3w_{N,j} -4w_{N-1,j} +w_{N-2,j} }{2\Delta x}} \right) \alpha S \nonumber \end{aligned}$$
(68)

We split the cable into 1000 segments, i.e., the space step \(\Delta x=0.001\), and set the time step \(\Delta t=0.0001(2)\). Based upon this discrete model, we use a time-stepping program coded by C++ to simulate the dynamic responses of cable–support coupled system directly. After the cable–support coupled steady responses are obtained, we compare these numerical results from the numerical full model to the approximate analytical ones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. An asymptotic expansion of cable–flexible support coupled nonlinear vibrations using boundary modulations. Nonlinear Dyn 88, 33–59 (2017). https://doi.org/10.1007/s11071-016-3229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3229-8

Keywords

Navigation