Skip to main content
Log in

Cable’s mode interactions under vertical support motions: boundary resonant modulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Cable’s triad and two-to-one mode interactions excited by support motions are modeled and analyzed in a unified boundary modulation formulation. Based upon proper scaling and a boundary resonance concept, the small support motion is modeled as a nonzero boundary modulation term for cable’s reduced (slow) dynamics through attacking cable’s continuous dynamic equations directly by the multiple scale method. Boundary resonance coefficients, characterizing the boundary modulation effect, are derived analytically for both cable’s triad and two-to-one mode resonant dynamics. It is found that the boundary resonance coefficients depend on both cable’s boundary modal information and cable’s initial deformation/sag. Frequency response diagrams based on cable’s reduced models (modulation equations) are obtained, with stability and bifurcation determined. Finally, these approximate analytical results are verified by the numerical results through applying the finite-difference method directly to cable’s original partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rega, G.: Nonlinear vibrations of suspended cables, part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Nonlinear vibrations of suspended cables—part III: random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2005)

    Article  Google Scholar 

  3. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A 341, 299–315 (1974)

    Article  Google Scholar 

  4. Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)

    Google Scholar 

  5. Triantafyllou, M.S.: Dynamics of cables, towing cables, and mooring systems. Shock Vib. Dig. 23, 3–8 (1991)

    Article  Google Scholar 

  6. Hagedon, P., Schäfer, B.: On non-linear free vibrations of an elastic cables. Int. J. Non-Linear Mech. 15, 333–339 (1980)

    Article  Google Scholar 

  7. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  8. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22, 497–509 (1987)

    Article  MATH  Google Scholar 

  9. Benedettin, Fi, Rega, G., Vestroni, F.: Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21, 38–46 (1986)

    Article  MATH  Google Scholar 

  10. Rao, G.V., Iyengar, R.N.: Internal resonance and non-linear response of a cable under periodic excitation. J. Sound Vib. 149, 25–41 (1991)

    Article  Google Scholar 

  11. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  12. Lee, C.L., Perkins, N.C.: Non-linear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1993)

    Google Scholar 

  13. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation. Nonlinear Dyn. 48, 231–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables: discretization versus direct treatment. Nonlinear Dyn. 8, 65–83 (1995)

    Article  MathSciNet  Google Scholar 

  15. Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one dimensional systems. Int. J. Non-Linear Mech. 38, 851–871 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lacarbonara, W., Rega, G.: Resonat non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non-Linear Mech. 38, 873–887 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)

    Article  Google Scholar 

  18. Nayfeh, A.H.: Non-linear Interactions. Wiley-Inter Science, New York (2000)

    Google Scholar 

  19. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  20. Rega, G., Luongo, A.: Natural vibrations of suspended cables with flexible supports. Comput. Struct. 12, 65–75 (1980)

    Article  MATH  Google Scholar 

  21. Rega, G., Alaggio, R.: Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system. Int. J. Solids Struct. 38(10), 2049–2068 (2001)

    Article  MATH  Google Scholar 

  22. Koh, C.G., Rong, Y.: Dynamic analysis of large displacement cable motion with experimental verification. J. Sound Vib. 272(1), 187–206 (2004)

    Article  Google Scholar 

  23. Berlioz, A., Lamarque, C.H.: Nonlinear vibrations of an inclined cable. ASME J. Vib. Acoust. 127, 315–323 (2005)

    Article  Google Scholar 

  24. Rega, G., Alaggio, R.: Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-Hopf bifurcation. J. Sound Vib. 322(3), 581–611 (2009)

    Article  Google Scholar 

  25. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  26. Cai, Y., Chen, S.S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. 120, 1786–1802 (1993)

    Article  Google Scholar 

  27. Lilien, J.L., PintodaCosta, A.: Vibration amplitudes caused by parametric excitation of cable stayed structure. J. Sound Vib. 174, 69–90 (1994)

    Article  MATH  Google Scholar 

  28. Pintoda Costa, A., Martins, J.A., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech 122, 613–622 (1996)

    Article  Google Scholar 

  29. Berlioz, A., Lamarque, C.H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279, 619–639 (2005)

    Article  Google Scholar 

  30. Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)

    Article  Google Scholar 

  31. Wang, L.H., Zhao, Y.Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)

    Article  Google Scholar 

  32. Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Macdonald, J.H.G.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318, 565–579 (2008)

    Article  Google Scholar 

  33. Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J., Wagg, D.J.: Generalized modal stability of inclined cables subjected to support excitations. J. Sound Vib. 329, 4515–4533 (2010)

    Article  Google Scholar 

  34. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: In-plane non-linear dynamics of the stay cables. Nonlinear Dyn. 73, 1385–1398 (2013)

    Article  MathSciNet  Google Scholar 

  35. Warnitchai, P., Fujinob, Y., Susumpowc, T.: A non-linear dynamic model for cables and its application to cable-structure system. J. Sound Vib. 187, 695–712 (1995)

    Article  Google Scholar 

  36. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)

    Article  MATH  Google Scholar 

  37. Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nayfeh, A.H., Arafat, A.H., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169, 319–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gattulli, V., Lepidi, M.: Localization and veering in cable-stayed bridge dynamics. Comput. Struct. 85(21–22), 1661–1668 (2007)

  41. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1994)

    MATH  Google Scholar 

  42. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems–A Guide to XPP-AUTO for Researchers and Students. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  43. Srinil, N., Rega, G.: Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables. J. Sound Vib. 315, 394–413 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by Program for Supporting Young Investigator, Hunan University. And it is also supported by National Science Foundation of China under Grant Nos. 11502076 and 11572117. Interesting comments and criticism by the reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Appendices

Appendix 1

Suspended cable’s linear modal analysis can be found in reference [3]. We restrict our attention to cable’s in-plane symmetric modes in this paper, and these modes are given by

$$\begin{aligned} \phi _i \left( x \right)= & {} c_i \left[ {1-\tan \left( {\frac{\omega _i }{2}} \right) \sin \omega _i x-\cos \omega _i x} \right] ,\nonumber \\&i=1,3,5\cdots \end{aligned}$$
(60)

where \(c_{i}\) is the normalization constants. And the associated eigenfrequencies are determined by

$$\begin{aligned} \frac{1}{2}\omega _i -\tan \left( {\frac{1}{2}\omega _i } \right) -\frac{1}{2\lambda ^{2}}\omega _i^3 =0 \end{aligned}$$
(61)

where \(\lambda ^{2}=EA/mgl(8b/l)^{3}\) is the elasto-geometric parameter. The above nonlinear transcendental equations can be solved by the Newton–Raphson method.

Appendix 2

$$\begin{aligned} \varPi _{12} \left( x \right)= & {} \alpha \left\langle {{\phi }_1' ,{\phi }_2'} \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }_2' } \right\rangle {\phi }_1'' +\alpha \left\langle {{y}',{\phi }_1'} \right\rangle {\phi }_2''\nonumber \\ \end{aligned}$$
(62)
$$\begin{aligned} \varPi _{31} \left( x \right)= & {} \alpha \left\langle {{\phi }_1' ,{\phi }_3' } \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }_3' } \right\rangle {\phi }_1'' +\alpha \left\langle {{y}',{\phi }_1' } \right\rangle {\phi }_3''\nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned} \varPi _{32} \left( x \right)= & {} \alpha \left\langle {{\phi }_2' ,{\phi }_3' } \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }_3' } \right\rangle {\phi }_2'' +\alpha \left\langle {{y}',{\phi }'_2 } \right\rangle {\phi }_3''\nonumber \\ \end{aligned}$$
(64)
$$\begin{aligned} \varPi _1 \left( x \right)= & {} \left( {\alpha /2} \right) \left\langle {{\phi }_1', {\phi }_1' } \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }_1' } \right\rangle {\phi }_1'' \end{aligned}$$
(65)
$$\begin{aligned} \varPi _{21} \left( x \right)= & {} \alpha \left\langle {{\phi }_1' ,{\phi }_2' } \right\rangle {y}''+\alpha \left\langle {{y}',{\phi }_2' } \right\rangle {\phi }_1'' +\alpha \left\langle {{y}',{\phi }_1' } \right\rangle {\phi }_2''\nonumber \\ \end{aligned}$$
(66)

Appendix 3

Single-mode solutions associated with triad mode resonance and two-to-one resonance, and their stability analysis, are determined by following reference [18].

The single-mode equilibrium solutions of cable’s modulation equations are obtained through setting \(a_1 =a_2 ={a}_3' ={\gamma }_2' =0\) in Eqs. (44)–(46) and Eqs. (47) and (48)

$$\begin{aligned} a_3 =\frac{1}{2\omega _3 }\frac{\varLambda _3 Z_0 }{\sqrt{\mu _3^2 +\sigma _2^2 }} \end{aligned}$$
(67)

For coupled-mode solutions, the cable’s high-frequency mode \(a_{3}\) is saturated at (i.e., keeping constant if arriving at a critical value, irrespective of the excitation)

$$\begin{aligned} a_3^*=\frac{4}{\left| {\varGamma _k } \right| }\sqrt{\omega _1 \omega _2 }\sqrt{\mu _1 \mu _2 }\left[ {1+\left( {\frac{\sigma _1 +\sigma _2 }{\mu _1 +\mu _2 }} \right) ^{2}} \right] ^{\frac{1}{2}} \end{aligned}$$
(68)

In other words, \(0\le a_3 \le a_3^*\). Furthermore, the single-mode equilibrium solution in Eq. (67) is stable if \(a_3 <a_3^*\), otherwise unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Kang, H., Wang, L. et al. Cable’s mode interactions under vertical support motions: boundary resonant modulation. Nonlinear Dyn 84, 1259–1279 (2016). https://doi.org/10.1007/s11071-015-2565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2565-4

Keywords

Navigation