Skip to main content

Advertisement

Log in

Disease-Toxicant Interactions in Parkinson’s Disease Neuropathology

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Human disease commonly manifests as a result of complex genetic and environmental interactions. In the case of neurodegenerative diseases, such as Parkinson’s disease (PD), understanding how environmental exposures collude with genetic polymorphisms in the central nervous system to cause dysfunction is critical in order to develop better treatment strategies, therapies, and a more cohesive paradigm for future research. The intersection of genetics and the environment in disease etiology is particularly relevant in the context of their shared pathophysiological mechanisms. This review offers an integrated view of disease-toxicant interactions in PD. Particular attention is dedicated to how mutations in the genes SNCA, parkin, leucine-rich repeat kinase 2 (LRRK2) and DJ-1, as well as dysfunction of the ubiquitin proteasome system, may contribute to PD and how exposure to heavy metals, pesticides and illicit drugs may further the consequences of these mutations to exacerbate PD and PD-like disorders. Although the toxic effects induced by exposure to these environmental factors may not be the primary causes of PD, their mechanisms of action are critical for our current understanding of the neuropathologies driving PD. Elucidating how environment and genetics collude to cause pathogenesis of PD will facilitate the development of more effective treatments for the disease. Additionally, we discuss the neuroprotection exerted by estrogen and other compounds that may prevent PD and provide an overview of current treatment strategies and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao H-M, Hong J-S (2011) Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94:1–19. doi:10.1016/j.pneurobio.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schapira AH, Cooper JM, Dexter D et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  CAS  PubMed  Google Scholar 

  3. Ramirez-Alvarado M, Kelly JW, Dobson CM (2010) Protein misfolding diseases. Wiley, New York. doi:10.1002/9780470572702

    Book  Google Scholar 

  4. Sveinbjörnsdottir S, Hicks AA, Jonsson T et al (2000) Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 343:1765–1770. doi:10.1056/NEJM200012143432404

    Article  PubMed  Google Scholar 

  5. Rocca WA, McDonnell SK, Strain KJ et al (2004) Familial aggregation of Parkinson’s disease: the Mayo clinic family study. Ann Neurol 56:495–502. doi:10.1002/ana.20228

    Article  PubMed  Google Scholar 

  6. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318. doi:10.1038/nrg1831

    Article  CAS  PubMed  Google Scholar 

  7. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16 Spec No. 2:R183–R194. doi:10.1093/hmg/ddm159

    Article  CAS  Google Scholar 

  8. Duvoisin RC, Eldridge R, Williams A et al (1981) Twin study of Parkinson disease. Neurology 31:77–80

    Article  CAS  PubMed  Google Scholar 

  9. Tanner CM (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Adv Neurol 91:133–142

    PubMed  Google Scholar 

  10. Wirdefeldt K, Gatz M, Schalling M, Pedersen NL (2004) No evidence for heritability of Parkinson disease in Swedish twins. Neurology 63:305–311

    Article  PubMed  Google Scholar 

  11. Tanner CM, Ottman R, Goldman SM et al (1999) Parkinson disease in twins: an etiologic study. JAMA 281:341–346

    Article  CAS  PubMed  Google Scholar 

  12. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59. doi:10.1093/hmg/ddp012

    Article  CAS  PubMed  Google Scholar 

  13. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780. doi:10.1002/humu.21277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cookson MR (2009) Alpha-synuclein and neuronal cell death. Mol Neurodegener 4:9. doi:10.1186/1750-1326-4-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Baba M, Nakajo S, Tu PH et al (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Darios F, Ruipérez V, López I et al (2010) Alpha-synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO Rep 11:528–533. doi:10.1038/embor.2010.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perrin RJ, Woods WS, Clayton DF, George JM (2001) Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 276:41958–41962. doi:10.1074/jbc.M105022200

    Article  CAS  PubMed  Google Scholar 

  18. Sharon R, Bar-Joseph I, Frosch MP et al (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37:583–595

    Article  CAS  PubMed  Google Scholar 

  19. Assayag K, Yakunin E, Loeb V et al (2007) Polyunsaturated fatty acids induce alpha-synuclein-related pathogenic changes in neuronal cells. Am J Pathol 171:2000–2011. doi:10.2353/ajpath.2007.070373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399. doi:10.1101/cshperspect.a009399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110. doi:10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related ala-53 → Thr mutant alpha-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275:24065–24069. doi:10.1074/jbc.M002413200

    Article  PubMed  Google Scholar 

  23. Jensen PJ, Alter BJ, O’Malley KL (2003) Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. J Neurochem 86:196–209

    Article  CAS  PubMed  Google Scholar 

  24. Rockenstein E, Nuber S, Overk CR et al (2014) Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain 137:1496–1513. doi:10.1093/brain/awu057

    Article  PubMed  PubMed Central  Google Scholar 

  25. McNaught KSP, Olanow CW (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann Neurol 53 Suppl 3:S73–84. doi:10.1002/ana.10512 (discussion S84)

    Article  CAS  PubMed  Google Scholar 

  26. Li J-Y, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  27. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747

    Article  CAS  PubMed  Google Scholar 

  28. Lee H-J, Patel S, Lee S-J (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024. doi:10.1523/JNEUROSCI.0692-05.2005

    Article  CAS  PubMed  Google Scholar 

  29. Lee H-J, Choi C, Lee S-J (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678. doi:10.1074/jbc.M107045200

    Article  CAS  PubMed  Google Scholar 

  30. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    Article  CAS  PubMed  Google Scholar 

  31. Borghi R, Marchese R, Negro A et al (2000) Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287:65–67. doi:10.1016/S0304-3940(00)01153-8

    Article  CAS  PubMed  Google Scholar 

  32. El-Agnaf OMA, Salem SA, Paleologou KE et al (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947. doi:10.1096/fj.03-0098fje

    CAS  PubMed  Google Scholar 

  33. Miller DW, Hague SM, Clarimon J et al (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838

    Article  CAS  PubMed  Google Scholar 

  34. Desplats P, Lee H-J, Bae E-J et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015. doi:10.1073/pnas.0903691106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Danzer KM, Kranich LR, Ruf WP, et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi:10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alvarez-Erviti L, Seow Y, Schapira AH et al (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367. doi:10.1016/j.nbd.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emmanouilidou E, Melachroinou K, Roumeliotis T et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851. doi:10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez RG, Waymire JC, Lin E et al (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099

    CAS  PubMed  Google Scholar 

  39. Alerte TNM, Akinfolarin AA, Friedrich EE et al (2008) Alpha-synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice. Neurosci Lett 435:24–29. doi:10.1016/j.neulet.2008.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 7:240–250. doi:10.1006/nbdi.2000.0319

    Article  CAS  PubMed  Google Scholar 

  41. Conway KA, Lee SJ, Rochet JC et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karpinar DP, Balija MBG, Kügler S et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28:3256–3268. doi:10.1038/emboj.2009.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duda JE, Lee VM, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. J Neurosci Res 61:121–127

    Article  CAS  PubMed  Google Scholar 

  44. Seidel K, Schöls L, Nuber S et al (2010) First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol 67:684–689. doi:10.1002/ana.21966

    Article  CAS  PubMed  Google Scholar 

  45. Chartier-Harlin M-C, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169. doi:10.1016/S0140-6736(04)17103-1

    Article  CAS  PubMed  Google Scholar 

  46. Nishioka K, Hayashi S, Farrer MJ et al (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309. doi:10.1002/ana.20753

    Article  CAS  PubMed  Google Scholar 

  47. Maraganore DM, de Andrade M, Elbaz A et al (2006) Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 296:661–670. doi:10.1001/jama.296.6.661

    Article  CAS  PubMed  Google Scholar 

  48. Cersosimo MG, Benarroch EE (2008) Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord 23:1065–1075. doi:10.1002/mds.22051

    Article  PubMed  Google Scholar 

  49. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  50. Farrer M, Maraganore DM, Lockhart P et al (2001) Alpha-synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10:1847–1851

    Article  CAS  PubMed  Google Scholar 

  51. Chung SJ, Armasu SM, Anderson KJ et al (2013) Genetic susceptibility loci, environmental exposures, and Parkinson’s disease: a case-control study of gene-environment interactions. Parkinsonism Relat Disord 19:595–599. doi:10.1016/j.parkreldis.2013.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tong Y, Yamaguchi H, Giaime E et al (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA 107:9879–9884. doi:10.1073/pnas.1004676107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith WW, Pei Z, Jiang H et al (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci USA 102:18676–18681. doi:10.1073/pnas.0508052102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liou AKF, Leak RK, Li L, Zigmond MJ (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol Dis 32:116–124. doi:10.1016/j.nbd.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Healy DG, Falchi M, O’Sullivan SS et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–590. doi:10.1016/S1474-4422(08)70117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ross CA, Smith WW (2007) Gene-environment interactions in Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl 3):S309–S315. doi:10.1016/S1353-8020(08)70022-1

    Article  PubMed  Google Scholar 

  57. Paisán-Ruiz C, Washecka N, Nath P et al (2009) Parkinson’s disease and low frequency alleles found together throughout LRRK2. Ann Hum Genet 73:391–403. doi:10.1111/j.1469-1809.2009.00524.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Saha S, Guillily MD, Ferree A et al (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29:9210–9218. doi:10.1523/JNEUROSCI.2281-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ng C-H, Mok SZS, Koh C et al (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29:11257–11262. doi:10.1523/JNEUROSCI.2375-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Betarbet R, Canet-Aviles RM, Sherer TB et al (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22:404–420. doi:10.1016/j.nbd.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  61. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803. doi:10.1083/jcb.200809125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim K-L, Tan JMM (2007) Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem 8(Suppl 1):S13. doi:10.1186/1471-2091-8-S1-S13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Greene JC, Whitworth AJ, Kuo I et al (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083. doi:10.1073/pnas.0737556100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Whitworth AJ, Theodore DA, Greene JC et al (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci USA 102:8024–8029. doi:10.1073/pnas.0501078102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. doi:10.1074/jbc.M401135200

    Article  CAS  PubMed  Google Scholar 

  66. Poole AC, Thomas RE, Andrews LA et al (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643. doi:10.1073/pnas.0709336105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seidler A, Hellenbrand W, Robra BP et al (1996) Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 46:1275–1284

    Article  CAS  PubMed  Google Scholar 

  68. Aschner M, Erikson KM, Herrero Hernández E et al (2009) Manganese and its role in Parkinson’s disease: from transport to neuropathology. Neuromolecular Med 11:252–266. doi:10.1007/s12017-009-8083-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwakye GF, Paoliello MMB, Mukhopadhyay S et al (2015) Manganese-induced parkinsonism and parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12:7519–7540. doi:10.3390/ijerph120707519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takeda A (2003) Manganese action in brain function. Brain Res Brain Res Rev 41:79–87

    Article  CAS  PubMed  Google Scholar 

  71. Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1–32

    Article  CAS  PubMed  Google Scholar 

  72. Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66:675–682. doi:10.1097/nen.0b013e31812503cf

    Article  CAS  PubMed  Google Scholar 

  73. Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19:415–421. doi:10.1016/j.etap.2004.12.053

    Article  CAS  PubMed  Google Scholar 

  74. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128

    Article  CAS  PubMed  Google Scholar 

  75. Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 37:89–121

    CAS  PubMed  Google Scholar 

  76. Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18:303–308

    Article  CAS  PubMed  Google Scholar 

  77. Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203. doi:10.1016/j.jtemb.2011.08.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fitzgerald K, Mikalunas V, Rubin H et al (1999) Hypermanganesemia in patients receiving total parenteral nutrition. JPEN J Parenter Enteral Nutr 23:333–336

    Article  CAS  PubMed  Google Scholar 

  79. Bertinet DB, Tinivella M, Balzola FA et al (2000) Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN J Parenter Enteral Nutr 24:223–227

    Article  CAS  PubMed  Google Scholar 

  80. Hauser RA, Zesiewicz TA, Rosemurgy AS et al (1994) Manganese intoxication and chronic liver failure. Ann Neurol 36:871–875. doi:10.1002/ana.410360611

    Article  CAS  PubMed  Google Scholar 

  81. Verhoeven WM, Egger JI, Kuijpers HJ (2011) Manganese and acute paranoid psychosis: a case report. J Med Case Reports 5:146. doi:10.1186/1752-1947-5-146

    Article  PubMed Central  Google Scholar 

  82. Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    CAS  PubMed  Google Scholar 

  83. Kim Y, Kim JM, Kim JW et al (2002) Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Mov Disord 17:568–575. doi:10.1002/mds.10089

    Article  CAS  PubMed  Google Scholar 

  84. Struve MF, McManus BE, Wong BA, Dorman DC (2007) Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. Am J Ind Med 50:772–778. doi:10.1002/ajim.20489

    Article  CAS  PubMed  Google Scholar 

  85. Gitler AD, Chesi A, Geddie ML et al (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41:308–315. doi:10.1038/ng.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cowan DM, Zheng W, Zou Y et al (2009) Manganese exposure among smelting workers: relationship between blood manganese-iron ratio and early onset neurobehavioral alterations. Neurotoxicology 30:1214–1222. doi:10.1016/j.neuro.2009.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55:225–228

    Article  CAS  PubMed  Google Scholar 

  88. Xu B, Wu S-W, Lu C-W et al (2013) Oxidative stress involvement in manganese-induced alpha-synuclein oligomerization in organotypic brain slice cultures. Toxicology 305:71–78. doi:10.1016/j.tox.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  89. Hsu LJ, Sagara Y, Arroyo A et al (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Migheli R, Godani C, Sciola L et al (1999) Enhancing effect of manganese on L-DOPA-induced apoptosis in PC12 cells: role of oxidative stress. J Neurochem 73:1155–1163

    Article  CAS  PubMed  Google Scholar 

  91. Gavin CE, Gunter KK, Gunter TE (1999) Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology 20:445–453

    CAS  PubMed  Google Scholar 

  92. Prabhakaran K, Chapman GD, Gunasekar PG (2011) α-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-κB-mediated pathway. Toxicol Mech Methods 21:435–443. doi:10.3109/15376516.2011.560210

    Article  CAS  PubMed  Google Scholar 

  93. Cai T, Yao T, Zheng G et al (2010) Manganese induces the overexpression of α-synuclein in PC12 cells via ERK activation. Brain Res 1359:201–207. doi:10.1016/j.brainres.2010.08.055

    Article  CAS  PubMed  Google Scholar 

  94. Harischandra DS, Jin H, Anantharam V et al (2015) α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson’s disease. Toxicol Sci 143:454–468. doi:10.1093/toxsci/kfu247

    Article  CAS  PubMed  Google Scholar 

  95. Bornhorst J, Chakraborty S, Meyer S et al (2014) The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of α-synuclein in C. elegans. Metallomics 6:476–490. doi:10.1039/c3mt00325f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296. doi:10.1074/jbc.M105343200

    Article  CAS  PubMed  Google Scholar 

  97. Earle KM (1968) Studies on Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J Neuropathol Exp Neurol 27:1–14

    Article  CAS  PubMed  Google Scholar 

  98. Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  CAS  PubMed  Google Scholar 

  99. Dexter DT, Carayon A, Javoy-Agid F et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  100. Di Monte DA, Lavasani M, Manning-Bog AB (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23:487–502

    Article  CAS  PubMed  Google Scholar 

  101. Willis AW, Evanoff BA, Lian M et al (2010) Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am J Epidemiol 172:1357–1363. doi:10.1093/aje/kwq303

    Article  PubMed  PubMed Central  Google Scholar 

  102. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  103. Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956

    Article  Google Scholar 

  104. Langston JW, Forno LS, Tetrud J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  105. Daniels AJ, Reinhard JF (1988) Energy-driven uptake of the neurotoxin 1-methyl-4-phenylpyridinium into chromaffin granules via the catecholamine transporter. J Biol Chem 263:5034–5036

    CAS  PubMed  Google Scholar 

  106. Gainetdinov RR, Fumagalli F, Jones SR, Caron MG (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi N, Miner LL, Sora I et al (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vaccari A, Saba P (1995) The tyramine-labelled vesicular transporter for dopamine: a putative target of pesticides and neurotoxins. Eur J Pharmacol 292:309–314

    CAS  PubMed  Google Scholar 

  109. Miller GW, Kirby ML, Levey AI, Bloomquist JR (1999) Heptachlor alters expression and function of dopamine transporters. Neurotoxicology 20:631–637

    CAS  PubMed  Google Scholar 

  110. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    CAS  PubMed  Google Scholar 

  111. Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409. doi:10.1038/70978

    Article  CAS  PubMed  Google Scholar 

  112. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  113. Chen H, Zhang SM, Hernán MA et al (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064. doi:10.1001/archneur.60.8.1059

    Article  PubMed  Google Scholar 

  114. Makino Y, Ohta S, Tachikawa O, Hirobe M (1988) Presence of tetrahydroisoquinoline and 1-methyl-tetrahydro-isoquinoline in foods: compounds related to Parkinson’s disease. Life Sci 43:373–378

    Article  CAS  PubMed  Google Scholar 

  115. Neafsey EJ, Albores R, Gearhart D et al (1995) Methyl-beta-carbolinium analogs of MPP + cause nigrostriatal toxicity after substantia nigra injections in rats. Brain Res 675:279–288

    Article  CAS  PubMed  Google Scholar 

  116. Purisai MG, McCormack AL, Langston WJ et al (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20:898–906. doi:10.1016/j.nbd.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  117. Xu Z, Cawthon D, McCastlain KA et al (2005) Selective alterations of gene expression in mice induced by MPTP. Synapse 55:45–51. doi:10.1002/syn.20089

    Article  CAS  PubMed  Google Scholar 

  118. Curtin K, Fleckenstein AE, Robison RJ et al (2015) Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug Alcohol Depend 146:30–38. doi:10.1016/j.drugalcdep.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  119. Granado N, Ares-Santos S, Moratalla R (2013) Methamphetamine and Parkinson’s disease. Parkinsons Dis 2013:308052. doi:10.1155/2013/308052

    PubMed  PubMed Central  Google Scholar 

  120. Kohno M, Morales AM, Ghahremani DG et al (2014) Risky decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in methamphetamine dependence. JAMA Psychiatry 71:812–820. doi:10.1001/jamapsychiatry.2014.399

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ares-Santos S, Granado N, Espadas I et al (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39:1066–1080. doi:10.1038/npp.2013.307

    Article  CAS  PubMed  Google Scholar 

  122. Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14:2260–2271

    CAS  PubMed  Google Scholar 

  123. Fornai F, Lenzi P, Gesi M et al (2004) Similarities between methamphetamine toxicity and proteasome inhibition. Ann N Y Acad Sci 1025:162–170. doi:10.1196/annals.1316.021

    Article  CAS  PubMed  Google Scholar 

  124. Roehr B (2005) Half a million Americans use methamphetamine every week. BMJ 331:476. doi:10.1136/bmj.331.7515.476

    Article  PubMed  PubMed Central  Google Scholar 

  125. Moszczynska A, Yamamoto BK (2011) Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 116:1005–1017. doi:10.1111/j.1471-4159.2010.07147.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu B, Traini R, Killinger B et al (2013) Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity. Exp Neurol 247:359–372. doi:10.1016/j.expneurol.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tanner CM, Kamel F, Ross GW et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872. doi:10.1289/ehp.1002839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hatcher JM, Pennell KD, Miller GW (2008) Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci 29:322–329. doi:10.1016/j.tips.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  129. Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi:10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  130. Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    CAS  PubMed  Google Scholar 

  131. Gao H-M, Hong J-S, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  132. Bergen WG (1971) The in vitro effect of dieldrin on respiration of rat liver mitochondria. Proc Soc Exp Biol Med 136:732–735

    Article  CAS  PubMed  Google Scholar 

  133. Zhang J, Fitsanakis VA, Gu G et al (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  CAS  PubMed  Google Scholar 

  134. Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886. doi:10.1016/j.freeradbiomed.2008.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Corrigan FM, Wienburg CL, Shore RF et al (2000) Organochlorine insecticides in substantia nigra in Parkinson’s disease. J Toxicol Environ Health A 59:229–234

    Article  CAS  PubMed  Google Scholar 

  136. Fleming L, Mann JB, Bean J et al (1994) Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 36:100–103. doi:10.1002/ana.410360119

    Article  CAS  PubMed  Google Scholar 

  137. Sanchez-Ramos J, Facca A, Basit A, Song S (1998) Toxicity of dieldrin for dopaminergic neurons in mesencephalic cultures. Exp Neurol 150:263–271. doi:10.1006/exnr.1997.6770

    Article  CAS  PubMed  Google Scholar 

  138. Kanthasamy AG, Kitazawa M, Yang Y et al (2008) Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): implications for neurodegeneration in Parkinson’s disease. Mol Brain 1:12. doi:10.1186/1756-6606-1-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kitazawa M, Anantharam V, Kanthasamy AG (2001) Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med 31:1473–1485

    Article  CAS  PubMed  Google Scholar 

  140. Heinz GH, Hill EF, Contrera JF (1980) Dopamine and norepinephrine depletion in ring doves fed DDE, dieldrin, and Aroclor 1254. Toxicol Appl Pharmacol 53:75–82

    Article  CAS  PubMed  Google Scholar 

  141. Richardson JR, Caudle WM, Wang M et al (2006) Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease. FASEB J 20:1695–1697. doi:10.1096/fj.06-5864fje

    Article  CAS  PubMed  Google Scholar 

  142. Hatcher JM, Richardson JR, Guillot TS et al (2007) Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204:619–630. doi:10.1016/j.expneurol.2006.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun F, Anantharam V, Latchoumycandane C et al (2005) Dieldrin induces ubiquitin–proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharmacol Exp Ther 315:69–79. doi:10.1124/jpet.105.084632

    Article  CAS  PubMed  Google Scholar 

  144. Haaxma CA, Bloem BR, Borm GF et al (2007) Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatr 78:819–824. doi:10.1136/jnnp.2006.103788

    Article  PubMed  Google Scholar 

  145. Spyridopoulos I, Principe N, Krasinski KL et al (1998) Restoration of E2F expression rescues vascular endothelial cells from tumor necrosis factor-alpha-induced apoptosis. Circulation 98:2883–2890

    Article  CAS  PubMed  Google Scholar 

  146. Dluzen DE, McDermott JL, Liu B (1996) Estrogen as a neuroprotectant against MPTP-induced neurotoxicity in C57/B1 mice. Neurotoxicol Teratol 18:603–606

    Article  CAS  PubMed  Google Scholar 

  147. Miranda R, Sohrabji F, Singh M, Toran-Allerand D (1996) Nerve growth factor (NGF) regulation of estrogen receptors in explant cultures of the developing forebrain. J Neurobiol 31:77–87. doi:10.1002/(SICI)1097-4695(199609)31:1<77::AID-NEU7>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  148. Son JH, Chun HS, Joh TH et al (1999) Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 19:10–20

    CAS  PubMed  Google Scholar 

  149. Gatto NM, Deapen D, Stoyanoff S et al (2014) Lifetime exposure to estrogens and Parkinson’s disease in California teachers. Parkinsonism Relat Disord 20:1149–1156. doi:10.1016/j.parkreldis.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  150. Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Smoking and Parkinson’s disease: a dose-response relationship. Neurology 52:115–119

    Article  CAS  PubMed  Google Scholar 

  151. Baumann RJ, Jameson HD, McKean HE et al (1980) Cigarette smoking and Parkinson disease: 1. Comparison of cases with matched neighbors. Neurology 30:839–843

    Article  CAS  PubMed  Google Scholar 

  152. Janson AM, Møller A (1993) Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience 57:931–941

    Article  CAS  PubMed  Google Scholar 

  153. Mitsuoka T, Kaseda Y, Yamashita H et al (2002) Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima J Med Sci 51:33–39

    CAS  PubMed  Google Scholar 

  154. Clemens P, Baron JA, Coffey D, Reeves A (1995) The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology (Berl) 117:253–256

    Article  CAS  Google Scholar 

  155. Ebersbach G, Stöck M, Müller J et al (1999) Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Mov Disord 14:1011–1013

    Article  CAS  PubMed  Google Scholar 

  156. Watanabe H, Uramoto H (1986) Caffeine mimics dopamine receptor agonists without stimulation of dopamine receptors. Neuropharmacology 25:577–581

    Article  CAS  PubMed  Google Scholar 

  157. Nakaso K, Ito S, Nakashima K (2008) Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci Lett 432:146–150. doi:10.1016/j.neulet.2007.12.034

    Article  CAS  PubMed  Google Scholar 

  158. Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  CAS  PubMed  Google Scholar 

  159. Benedetti MD, Bower JH, Maraganore DM et al (2000) Smoking, alcohol, and coffee consumption preceding Parkinson’s disease: a case-control study. Neurology 55:1350–1358

    Article  CAS  PubMed  Google Scholar 

  160. Perry TL, Yong VW, Ito M et al (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically. J Neurochem 43:990–993

    Article  CAS  PubMed  Google Scholar 

  161. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism—chronic treatment with L-dopa. N Engl J Med 280:337–345. doi:10.1056/NEJM196902132800701

    Article  CAS  PubMed  Google Scholar 

  162. Thanvi B, Lo N, Robinson T (2007) Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J 83:384–388. doi:10.1136/pgmj.2006.054759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Moldovan A-S, Groiss SJ, Elben S et al (2015) The treatment of Parkinson’s disease with deep brain stimulation: current issues. Neural Regen Res 10:1018–1022. doi:10.4103/1673-5374.160094

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

GFK was supported in part by Oberlin College Office of Foundation, Government, and Corporate Grants. RAM was supported in part by Robert Rich Student Research Grant at Oberlin College. MA was supported in part by NIEHS Grants R01ES07331, R01ES10563 and R01ES020852.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gunnar F. Kwakye or Michael Aschner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwakye, G.F., McMinimy, R.A. & Aschner, M. Disease-Toxicant Interactions in Parkinson’s Disease Neuropathology. Neurochem Res 42, 1772–1786 (2017). https://doi.org/10.1007/s11064-016-2052-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2052-4

Keywords

Navigation