Skip to main content

Advertisement

Log in

Manganese and its Role in Parkinson’s Disease: From Transport to Neuropathology

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 04 September 2009

Abstract

The purpose of this review is to highlight recent advances in the neuropathology associated with Mn exposures. We commence with a discussion on occupational manganism and clinical aspects of the disorder. This is followed by novel considerations on Mn transport (see also chapter by Yokel, this volume), advancing new hypotheses on the involvement of several transporters in Mn entry into the brain. This is followed by a brief description of the effects of Mn on neurotransmitter systems that are putative modulators of dopamine (DA) biology (the primary target of Mn neurotoxicity), as well as its effects on mitochondrial dysfunction and disruption of cellular energy metabolism. Next, we discuss inflammatory activation of glia in neuronal injury and how disruption of synaptic transmission and glial-neuronal communication may serve as underlying mechanisms of Mn-induced neurodegeneration commensurate with the cross-talk between glia and neurons. We conclude with a discussion on therapeutic aspects of Mn exposure. Emphasis is directed at treatment modalities and the utility of chelators in attenuating the neurodegenerative sequelae of exposure to Mn. For additional reading on several topics inherent to this review as well as others, the reader may wish to consult Aschner and Dorman (Toxicological Review 25:147–154, 2007) and Bowman et al. (Metals and neurodegeneration, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ACGIH. (2009). Threshold limit values (TLVs®) for chemical substances and physical agents and biological exposure indices (BEIs®) Cincinnati, OH.

  • Alessio, L., Campagna, M., & Lucchini, R. (2007). From lead to manganese through mercury: Mythology, science, and lessons for prevention. American Journal of Industrial Medicine, 50, 779–787.

    PubMed  CAS  Google Scholar 

  • Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Brain manganese accumulation is inversely related to gamma-amino butyric acid uptake in male and female rats. Toxicological Sciences, 95, 188–195.

    PubMed  CAS  Google Scholar 

  • Anderson, J. G., Fordahl, S. C., Cooney, P. T., Weaver, T. L., Colyer, C. L., & Erikson, K. M. (2008). Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. Neurotoxicology, 29, 1044–1053.

    PubMed  CAS  Google Scholar 

  • Anderson, J. G., Fordahl, S. C., Cooney, P. T., Weaver, T. L., Colyer, C. L., & Erikson, K. M. (2009). Manganese exposure alters extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels in the developing rat brain. Brain Research, Submitted.

  • Apostoli, P., Lucchini, R., & Alessio, L. (2000). Are current biomarkers suitable for the assessment of manganese exposure in individual workers? American Journal of Industrial Medicine, 37, 283–290.

    PubMed  CAS  Google Scholar 

  • Aschner, M., & Dorman, D. C. (2007). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25, 147–154.

    Google Scholar 

  • Aschner, M., Gannon, M., & Kimelberg, H. K. (1992). Manganese uptake and efflux in cultured rat astrocytes. Journal of Neurochemistry, 58, 730–735.

    PubMed  CAS  Google Scholar 

  • Aschner, M., Guilarte, T. R., Schneider, J. S., & Zheng, W. (2007). Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 221, 131–147.

    PubMed  CAS  Google Scholar 

  • Ashizawa, R. (1927). Uber einen sektionsfall von chronischer manganvergiftung. Jap J Med Sci Trans, Sect VIII-Int Med Pediat Psychiat, 1, 173–191.

    Google Scholar 

  • Autissier, N., Rochette, L., Dumas, P., Beley, A., Loireau, A., & Bralet, J. (1982). Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. Toxicology, 24, 175–182.

    PubMed  CAS  Google Scholar 

  • Baek, S. Y., Cho, J. H., Kim, E. S., Kim, H. J., Yoon, S., Kim, B. S., et al. (2004). CDNA array analysis of gene expression profiles in brain of mice exposed to manganese. Industrial Health, 42, 315–320.

    PubMed  CAS  Google Scholar 

  • Bant, R. G., & Markesbery, W. R. (1977). Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology, 27, 213.

    Google Scholar 

  • Barhoumi, R., Faske, J., Liu, X., & Tjalkens, R. B. (2004). Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Brain Research Molecular Brain Research, 122, 167–179.

    PubMed  CAS  Google Scholar 

  • Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., et al. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN. Journal of Parenteral and Enteral Nutrition, 24, 223–227.

    PubMed  CAS  Google Scholar 

  • Bikashvili, T. Z., Shukakidze, A. A., & Kiknadze, G. I. (2001). Changes in the ultrastructure of the rat cerebral cortex after oral doses of manganese chloride. Neuroscience and Behavioral Physiology, 31, 385–389.

    PubMed  CAS  Google Scholar 

  • Bock, N. A., Paiva, F. F., Nascimento, G. C., Newman, J. D., & Silva, A. C. (2008). Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Research, 1198, 60–170.

    Google Scholar 

  • Boojar, M. M., Goodarzi, F., & Basedaghat, M. A. (2002). Long-term follow-up of workplace and well water manganese effects on iron status indexes in manganese miners. Archives of Environmental Health, 57, 519–528.

    PubMed  CAS  Google Scholar 

  • Bouchard, M., Mergler, D., Baldwin, M., Panisset, M., Bowler, R., & Roels, H. A. (2007). Neurobehavioral functioning after cessation of manganese exposure: A follow-up after 14 years. American Journal of Industrial Medicine, 50, 831–840.

    PubMed  CAS  Google Scholar 

  • Bowman, A., Erikson, K. M., & Aschner, M. (2009). Manganese: The Two faces of essentiality and neurotoxicity. In Huang S, Ed. Metals and neurodegeneration. Kerala, India: Research Signpost.

  • Brouillet, E. P., Shinobu, L., McGarvey, U., Hochberg, F., & Beal, M. F. (1993). Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Experimental Neurology, 120, 89–94.

    PubMed  CAS  Google Scholar 

  • Burton, N. C., Schneider, J. S., Syversen, T., & Guilarte, T. S. (2009). Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the non-human primate brain. Toxicological Sciences [Epub ahead of print]. PMID: 19520674.

  • Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic parkinsonism: Similarities and differences. Neurology, 44, 1583–1586.

    PubMed  CAS  Google Scholar 

  • CDC-MMWR. (2006). Deaths associated with hypocalcemia from chelation therapy-Texas, Pennsylvania and Oregon, 2003-2005. 55, 204–207.

  • Cersosimo, M. G., & Koller, W. C. (2006). The diagnosis of manganese-induced parkinsonism. Neurotoxicology, 27, 340–346.

    PubMed  CAS  Google Scholar 

  • Chandra, S. V., Murthy, R. C., Husain, T., & Bansal, S. K. (1984). Effect of interaction of heavy metals on (Na+-K+) ATPase and the uptake of 3H-DA and 3H-NA in rat brain synaptosomes. Acta pharmacologica et toxicologica, 54, 210–213.

    PubMed  CAS  Google Scholar 

  • Chang, J. Y., & Liu, L. Z. (1999). Manganese potentiates nitric oxide production by microglia. Brain Research. Molecular Brain Research, 68, 22–28.

    PubMed  CAS  Google Scholar 

  • Chen, C. J., Ou, Y. C., Lin, S. Y., Liao, S. L., Chen, S. Y., & Chen, J. H. (2006). Manganese modulates pro-inflammatory gene expression in activated glia. Neurochemistry International, 49(1), 62–71.

    Google Scholar 

  • Cook, D. G., Fahn, S., & Brait, K. A. (1974). Chronic manganese intoxication. Archives of Neurology, 30, 59–64.

    PubMed  CAS  Google Scholar 

  • Cotzias, G. C., & Greenough, J. J. (1958). The high specificity of the manganese pathway through the body. Journal of Clinical Investigation, 37, 1298–1305.

    PubMed  CAS  Google Scholar 

  • Couper, J. (1837). On the effects of black oxide of manganese when inhaled into the lungs. British Annals Medical Pharma, 1, 41–42.

    Google Scholar 

  • Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S., & Yokel, R. A. (2003). Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology, 24, 3–13.

    PubMed  CAS  Google Scholar 

  • Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine, 17, 544–553.

    PubMed  CAS  Google Scholar 

  • da Silva, C. J., da Rocha, A. J., Jeronymo, S., Mendes, M. F., Milani, F. T., Maia, A. C., Jr., et al. (2007). A preliminary study revealing a new association in patients undergoing maintenance hemodialysis: Manganism symptoms and T1 hyperintense changes in the basal ganglia. American Journal of Neuroradiology, 28, 1474–1479.

    PubMed  CAS  Google Scholar 

  • de Bie, R. M., Gladstone, R. M., Strafella, A. P., Ko, J. H., & Lang, A. E. (2007). Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Archives of Neurology, 64, 886–889.

    PubMed  Google Scholar 

  • De Paris, P., & Caroldi, S. (1994). In vivo inhibition of serum dopamine-beta-hydroxylase by CaNa2EDTA injection. Human and Experimental Toxicology, 13, 253–256.

    PubMed  Google Scholar 

  • Deitmer, J. W., Broer, A., & Broer, S. (2003). Glutamine efflux from astrocytes is mediated by multiple pathways. Journal of Neurochemistry, 87, 127–135.

    PubMed  CAS  Google Scholar 

  • Deng, Y., Xu, Z., Xu, B., Tian, Y., Deng, X., Xin, X., & Gao, J. (2009). Excitotoxicity in rat’s brain induced by exposure of manganese and neuroprotective effects of pinacidil and nimodipine. Biological Trace Element Research [Epub ahead of print]. PMID: 19300915.

  • Discalzi, G., Pira, E., Herrero Hernández, E., Valentini, C., Turbiglio, M., & Meliga, F. (2000). Occupational Mn parkinsonism: Magnetic resonance imaging and clinical patterns following CaNa2-EDTA chelation. Neurotoxicology, 21, 863–866.

    PubMed  CAS  Google Scholar 

  • Eide, D. J. (2004). The SLC39 family of metal ion transporters. Pflugers Archives. European Journal of Physiology, 447, 796–800.

    CAS  Google Scholar 

  • Ejima, A., Imamura, T., Nakamura, S., et al. (1992). Manganese intoxication during total parenteral nutrition. Lancet, 339, 426.

    PubMed  CAS  Google Scholar 

  • Embden, H. (1901). Zur kenntiss der metallischen nervendgifte. Deutsche medizinische Wochenschrift, 27, 795–796.

    Article  Google Scholar 

  • Erikson, K., & Aschner, M. (2002). Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes. Neurotoxicology, 23, 595–602.

    PubMed  CAS  Google Scholar 

  • Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2008). Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Neurotoxicology, 29, 377–385.

    PubMed  CAS  Google Scholar 

  • Fairhall, L. T., & Neal, P. A. (1943). Industrial manganese poisoning. National Institute of Health Bulletin No. 182, Washington DC, US Govt. Print. Off., 1–24.

  • Fell, J. M., Reynolds, A. P., Meadows, N., Khan, K., Long, S. G., Quaghebeur, G., et al. (1996). Manganese toxicity in children receiving long-term parenteral nutrition. Lancet, 347, 1218–1221.

    PubMed  CAS  Google Scholar 

  • Filipov, N. M., Seegal, R. F., & Lawrence, D. A. (2005). Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicological Sciences, 84, 139–148.

    PubMed  CAS  Google Scholar 

  • Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104, 420–432.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., et al. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103, 116–124.

    PubMed  CAS  Google Scholar 

  • Fitsanakis, V. A., Zhang, N., Avison, M. J., Gore, J. C., Aschner, J. L., & Aschner, M. (2006). The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. Neurotoxicology, 27, 798–806.

    PubMed  CAS  Google Scholar 

  • Foglieni, C., Fulgenzi, A., Ticozzi, P., Pellegatta, F., Sciorati, C., Belloni, D., et al. (2006). Protective effect of EDTA preadministration on renal ischemia. BMC Nephrology, 7, 5.

    PubMed  Google Scholar 

  • Foulkes, E. C., & McMullen, D. M. (1987). Kinetics of transepithelial movement of heavy metals in rat jejunum. American Journal of Physiology, 253, G134–G138.

    PubMed  CAS  Google Scholar 

  • Galindo, A., Del Arco, A., & Mora, F. (1999). Endogenous GABA potentiates the potassium-induced release of dopamine in striatum of the freely moving rat: A microdialysis study. Brain Research Bulletin, 50, 209–214.

    PubMed  CAS  Google Scholar 

  • Gao, G., Wu, Y., & Guo, Y. (2003). Survey on chronic occupational hazards in welders. Chinese Journal Industrial Medicine, 16, 107.

    CAS  Google Scholar 

  • Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2006). A manganese-enhanced diet alters brain metals and transporters in the developing rat. Toxicological Sciences, 92, 516–525.

    PubMed  CAS  Google Scholar 

  • Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95, 205–214.

    PubMed  CAS  Google Scholar 

  • Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. The Biochemical Journal, 266, 329–334.

    PubMed  CAS  Google Scholar 

  • Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1992). Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicology and Applied Pharmacology, 115, 1–5.

    PubMed  CAS  Google Scholar 

  • Gerson, R. J., & Shaikh, Z. A. (1984). Differences in the uptake of cadmium and mercury by rat hepatocyte primary cultures. Role of a sulfhydryl carrier. Biochemical Pharmacology, 33, 199–203.

    PubMed  CAS  Google Scholar 

  • Girijashanker, K., He, L., Soleimani, M., Reed, J. M., Li, H., Liu, Z., et al. (2008). Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: Similarities to the ZIP8 transporter. Molecular Pharmacology, 73, 1413–1423.

    PubMed  CAS  Google Scholar 

  • Graham, D. G. (1984). Catecholamine toxicity: A proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology, 5, 83–95.

    PubMed  CAS  Google Scholar 

  • Guilarte, T. R., Burton, N. C., McGlothan, J. L., et al. (2008a). Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): Implications to manganese-induced parkinsonism. Journal of Neurochemistry, 107, 1236–1247.

    PubMed  CAS  Google Scholar 

  • Guilarte, T. R., Burton, N. C., Verina, T., Prabhu, V. V., Becker, K. G., Syversen, T., et al. (2008b). Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Journal of Neurochemistry, 105, 1948–1959.

    PubMed  CAS  Google Scholar 

  • Guilarte, T. R., McGlothan, J. L., Degaonkar, M., Chen, M. K., Barker, P. B., Syversen, T., et al. (2006). Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: A 1H-MRS and MRI study. Toxicological Sciences, 94, 351–358.

    PubMed  CAS  Google Scholar 

  • Gunter, T. E., Gavin, C. E., Aschner, M., & Gunter, K. K. (2006). Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology, 27, 765–776.

    PubMed  CAS  Google Scholar 

  • Gupta, S. K., Murthy, R. C., & Chandra, S. V. (1980). Neuromelanin in manganese-exposed primates. Toxicology Letters, 6, 17–20.

    PubMed  CAS  Google Scholar 

  • Gwiazda, R. H., Lee, D., Sheridan, J., & Smith, D. R. (2002). Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology, 23, 69–76.

    PubMed  CAS  Google Scholar 

  • Haest, C. W., Kamp, D., Plasa, G., & Deuticke, B. (1977). Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents. Biochimica et Biophysica Acta, 469, 226–230.

    PubMed  CAS  Google Scholar 

  • HaMai, D., Rinderknecht, A. L., Guo-Sharman, K., Kleinman, M. T., & Bondy, S. C. (2006). Decreased expression of inflammation-related genes following inhalation exposure to manganese. Neurotoxicology, 27, 395–401.

    PubMed  CAS  Google Scholar 

  • Hauser, R. A., Zesiewicz, T. A., Rosemurgy, A. S., Martinez, C., & Olanow, C. W. (1994). Manganese intoxication and chronic liver failure. Annals of Neurology, 36, 871–875.

    PubMed  CAS  Google Scholar 

  • Haydon, P. G., & Carmignoto, G. (2006). Astrocyte control of synaptic transmission and neurovascular coupling. Physiological Reviews, 86, 1009–1031.

    PubMed  CAS  Google Scholar 

  • Hazell, A. S., Normandin, L., Nguyen, B., & Kennedy, G. (2003). Upregulation of ‘peripheral-type’ benzodiazepine receptors in the globus pallidus in a sub-acute rat model of manganese neurotoxicity. Neuroscience Letters, 349, 13–16.

    PubMed  CAS  Google Scholar 

  • Hazell, A. S., Normandin, L., Norenberg, M. D., Kennedy, G., & Yi, J. H. (2006). Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neuroscience Letters, 396, 167–171.

    PubMed  CAS  Google Scholar 

  • He, L., Girijashanker, K., Dalton, T. P., et al. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Molecular Pharmacology, 70, 171–180.

    PubMed  CAS  Google Scholar 

  • Hearn, A. S., Stroupe, M. E., Cabelli, D. E., Ramilo, C. A., Luba, J. P., Tainer, J. A., et al. (2003). Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: Insertion of valine C gamma into the substrate access channel. Biochemistry, 42, 2781–2789.

    PubMed  CAS  Google Scholar 

  • Henriksson, J., & Tjalve, H. (2000). Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicological Sci, 55, 392–398.

    CAS  Google Scholar 

  • Herrero Hernández, E., Discalzi, G., Dassi, P., Jarre, L., & Pira, E. (2003). Manganese intoxication: the cause of an inexplicable epileptic syndrome in a 3 year old child. Neurotoxicology, 24, 633–639.

    PubMed  Google Scholar 

  • Herrero Hernández, E., Discalzi, G., Valentini, C., Venturi, F., Chiò, A., Carmellino, C., et al. (2006). Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA. Neurotoxicology, 27, 333–339.

    PubMed  Google Scholar 

  • Herrero Hernández, E., Valentini, M. C., & Discalzi, G. (2002). T1-weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: are different pathologies sharing a common mechanism? Neurotoxicology, 23, 669–674.

    PubMed  Google Scholar 

  • Hirsch, E. C., Hunot, S., Damier, P., & Faucheux, B. (1998). Glial cells and inflammation in Parkinson’s disease: A role in neurodegeneration? Annals of Neurology, 44, S115–S120.

    PubMed  CAS  Google Scholar 

  • Holbrook, Jr. D. J. (1976). Assessment of the toxicity of automotive emissions, Vol. II. EPA 6001-76-010b.

  • HSBC. (2003). “BOC group-litigation a real risk”. Personal injury litigation against welding rod manufacturers. Hazardous Times GeneralCologneRe. http://www.facworld.com/WebLib.NSF/Object/HazardTimesApril2003.pdf/$File/HazardTimesApril2003.pdf.

  • Huang, C. C., Chu, N. S., Lu, C. S., Chen, R. S., Schulzer, M., & Calne, D. B. (2007). The natural history of neurological manganism over 18 years. Parkinsonism Related Disorders, 13, 143–145.

    PubMed  Google Scholar 

  • Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., et al. (1989). Chronic manganese intoxication. Archives of Neurology, 46, 1104–1106.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., Lu, C. S., Chu, N. S., et al. (1993). Progression after chronic manganese exposure. Neurology, 43, 1479–1483.

    PubMed  CAS  Google Scholar 

  • Jiang, Y. M., Mo, X. A., Du, F. Q., Hochberg, F., Lilienfeld, D., Olanow, W., et al. (2006). Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: A case of 17-year follow-up study. Journal of Occupational and Environmental Medicine, 48, 644–649.

    PubMed  Google Scholar 

  • Kawamura, R., Ikuta, H., Fukuzumi, S., Yamadaa, R., Tsubaki, S., Kodama, T., et al. (1941). Intoxication by manganese in well water. The Kitasato Archives Experimental Medicine, 18, 145–169.

    CAS  Google Scholar 

  • Keen, C. L., Ensunsa, J. L., & Clegg, M. S. (2000). Manganese metabolism in animals and humans including the toxicity of manganese. Metal Ions in Biological Systems, 37, 89–121.

    PubMed  CAS  Google Scholar 

  • Keen, C. L., & Leach, R. M. (1987). In H. G. Seiler, H. Sigel, & A. Sigel (Eds.), Handbook on toxicity of inorganic compounds (pp. 405–415). New York: Marcel Dekker.

    Google Scholar 

  • Kessler, K. R., Wunderlich, G., Hefter, H., & Seitz, R. J. (2003). Secondary progressive chronic manganism associated with markedly decreased striatal D2 receptor density. Movement Disorders, 18, 217–219.

    PubMed  Google Scholar 

  • Kim, Y. (2006). Neuroimaging in manganism. Neurotoxicology, 27, 369–372.

    PubMed  CAS  Google Scholar 

  • Kim, Y., Kim, J. W., Ito, K., Lim, H. S., Cheong, H. K., Kim, J. Y., et al. (1999). Idiopathic parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neurotoxicology, 20, 249–252.

    PubMed  CAS  Google Scholar 

  • Kim, Y., Kim, J. M., Kim, J. W., Yoo, C. I., Lee, C. R., Lee, J. H., et al. (2002). Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Movement Disorders, 17, 568–575.

    PubMed  CAS  Google Scholar 

  • Kim, Y., Park, J. K., Choi, Y., Yoo, C. I., Lee, C. R., Lee, H., et al. (2005). Blood manganese concentration is elevated in iron deficiency anemia patients, whereas globus pallidus signal intensity is minimally affected. Neurotoxicology, 26, 107–111.

    PubMed  CAS  Google Scholar 

  • Klos, K. J., Ahlskog, J. E., Kumar, N., Cambern, S., Butz, J., Burritt, M., et al. (2006). Brain metal concentrations in chronic liver failure patients with pallidal T1 MRI hyperintensity. Neurology, 67, 1984–1989.

    PubMed  CAS  Google Scholar 

  • Koller, W. C., Lyons, K. E., & Truly, W. (2004). Effect of levodopa treatment for parkinsonism in welders: A double-blind study. Neurology, 62, 730–733.

    PubMed  CAS  Google Scholar 

  • Komaki, H., Maisawa, S., Sugai, K., Kobayashi, Y., & Hashimoto, T. (1999). Tremor and seizures associated with chronic manganese intoxication. Brain and Development, 21, 122–124.

    PubMed  CAS  Google Scholar 

  • Koos, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2, 467–472.

    PubMed  CAS  Google Scholar 

  • Kosai, M. F. & Boyle, A. J. (1956). Ethylenediaminetetraacetic acid in manganese poisoning of rats. Industrial Medicine and Surgery, 25(1), 1–3.

    Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., & Vercesi, A. E. (1995). Ca(2+)-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state. American Journal of Physiology, 269, 141–147.

    Google Scholar 

  • Krachler, M., & Rossipal, E. (2000). Concentrations of trace elements in extensively hydrolysed infant formulae and their estimated daily intakes. Annals of Nutrition and Metabolism, 44, 68–74.

    PubMed  CAS  Google Scholar 

  • Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., & Lichtnecker, H. (1995). Manganese and chronic hepatic encephalopathy. Lancet, 346, 270–274.

    PubMed  CAS  Google Scholar 

  • Kruman, I. I., & Mattson, M. P. (1999). Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. Journal of Neurochemistry, 72, 529–540.

    PubMed  CAS  Google Scholar 

  • Ky, S. Q., Deng, H. S., Xie, P. Y., & Hu, W. (1992). A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. British Journal of Industrial Medicine, 49, 66–69.

    PubMed  CAS  Google Scholar 

  • Lai, J. C., Lim, L., & Davison, A. N. (1982). Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin. Journal of Inorganic Biochemistry, 17, 215–225.

    PubMed  CAS  Google Scholar 

  • Lategan, A. J., Marien, M. R., & Colpaert, F. C. (1990). Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumbens and caudate nucleus as determined by intracerebral microdialysis. Brain Research, 523, 134–138.

    PubMed  CAS  Google Scholar 

  • Levin, O. S. (2005). “Ephedron” encephalopathy. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 105, 12–20.

    PubMed  CAS  Google Scholar 

  • Liang, Y., & Xiang, Q. (2004). Occupational health services in PR China. Toxicology, 198, 45–54.

    PubMed  CAS  Google Scholar 

  • Liu, X., Buffington, J. A., & Tjalkens, R. B. (2005). NF-kappaB-dependent production of nitric oxide by astrocytes mediates apoptosis in differentiated PC12 neurons following exposure to manganese and cytokines. Brain Research. Molecular Brain Research, 141, 39–47.

    PubMed  CAS  Google Scholar 

  • Liu, X., Sullivan, K. A., Madl, J. E., Legare, M., & Tjalkens, R. B. (2006). Manganese-induced neurotoxicity: The role of astroglial-derived nitric oxide in striatal interneuron degeneration. Toxicological Sciences, 91, 521–531.

    PubMed  CAS  Google Scholar 

  • Lloyd, R. V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine. Chemical Research in Toxicology, 8, 111–116.

    PubMed  CAS  Google Scholar 

  • Lonnerdal, B. (1994). Nutritional aspects of soy formula. Acta Paediatrica. Supplement, 402, 105–108.

    PubMed  CAS  Google Scholar 

  • Lu, C. S., Huang, C. C., Chu, N. S., & Calne, D. B. (1994). Levodopa failure in chronic manganism. Neurology, 44, 1600–1602.

    PubMed  CAS  Google Scholar 

  • Marien, M. R., Colpaert, F. C., & Rosenquist, A. C. (2004). Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Research. Brain Research Reviews, 45, 38–78.

    PubMed  CAS  Google Scholar 

  • Martel, A. E., Smith, R. M., & Motekaitis, R. J. (1998). NIST critically selected stability constants of metal complexes. NIST standard references database. P. 46.

  • Martinez-Hernandez, A., Bell, K. P., & Norenberg, M. D. (1977). Glutamine synthetase: Glial localization in brain. Science, 195, 1356–1358.

    PubMed  CAS  Google Scholar 

  • Meral, H., Kutukcu, Y., Atmaca, B., Ozer, F., & Hamamcioglu, K. (2007). Parkinsonism caused by chronic usage of intravenous potassium permanganate. Neurologist, 13, 92–94.

    PubMed  Google Scholar 

  • Meyer, J. S., & Quenzer, L. F. (2005). Psychopharmacology: Drugs, the brain, and behavior (pp. 132–137). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Moreno, J. A., Sullivan, K. A., Carbone, D. L., Hanneman, W. H., & Tjalkens, R. B. (2008). Manganese potentiates nuclear factor-kappaB-dependent expression of nitric oxide synthase 2 in astrocytes by activating soluble guanylate cyclase and extracellular responsive kinase signaling pathways. Journal of Neuroscience Research, 86, 2028–2038.

    PubMed  CAS  Google Scholar 

  • Nachtman, J. P., Delor, S., & Brennan, C. E. (1987). Manganese neurotoxicity: Effects of varying oxygen tension and EDTA on dopamine auto-oxidation. Neurotoxicology, 8, 249–253.

    PubMed  CAS  Google Scholar 

  • Nelson, K., Golnick, J., Korn, T., & Angle, C. (1993). Manganese encephalopathy: Utility of early magnetic resonance imaging. British Journal of Industrial Medicine, 50, 510–513.

    PubMed  CAS  Google Scholar 

  • Newland, M. C., Ceckler, T. L., Kordower, J. H., & Weiss, B. (1989). Visualizing manganese in the primate basal ganglia with magnetic resonance imaging. Experimental Neurology, 106, 251–258.

    PubMed  CAS  Google Scholar 

  • Normandin, L., Ann Beaupre, L., Salehi, F., St-Pierre, A., Kennedy, G., Mergler, D., et al. (2004). Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology, 25, 433–441.

    PubMed  CAS  Google Scholar 

  • Ohtake, T., Negishi, K., Okamoto, K., Oka, M., Maesato, K., Moriya, H., et al. (2005). Manganese-induced Parkinsonism in a patient undergoing maintenance hemodialysis. American Journal of Kidney Diseases, 46, 749–753.

    PubMed  Google Scholar 

  • Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Annals of the New York Academy of Sciences, 1012, 209–223.

    PubMed  CAS  Google Scholar 

  • Olanow, C. W., Good, P. F., Shinotoh, H., Hewitt, K. A., Vingerhoets, F., Snow, B. J., et al. (1996). Manganese intoxication in the rhesus monkey: A clinical, imaging, pathologic, and biochemical study. Neurology, 46, 492–498.

    PubMed  CAS  Google Scholar 

  • Ono, K., Komai, K., & Yamada, M. (2002). Myoclonic involuntary movement associated with chronic manganese poisoning. Journal of the Neurological Sciences, 199, 93–96.

    PubMed  Google Scholar 

  • Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. N eurotoxicology, 20, 227–238.

    CAS  Google Scholar 

  • Parenti, M., Rusconi, L., Cappabianca, V., Parati, E. A., & Groppetti, A. (1988). Role of dopamine in manganese neurotoxicity. Brain Research, 473, 236–240.

    PubMed  CAS  Google Scholar 

  • Park, J. D., Chung, Y. H., Kim, C. Y., Ha, C. S., Yang, S. O., Khang, H. S., et al. (2007). Comparison of high MRI T1 signals with manganese concentration in brains of cynomolgus monkeys after 8 months of stainless steel welding-fume exposure. Inhalation Toxicology, 19, 965–971.

    PubMed  CAS  Google Scholar 

  • Penalver, R. (1957). Diagnosis and treatment of manganese intoxication; report of a case. AMA Archives of Industrial Health, 16, 64–66.

    CAS  Google Scholar 

  • Pentschew, A., Ebner, F. F., & Kovatch, R. M. (1963). Experimental manganese encephalopathy in monkeys. A preliminary report. Journal of Neuropathology and Experimental Neurology, 22, 488–499.

    PubMed  CAS  Google Scholar 

  • Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66, 675–682.

    PubMed  CAS  Google Scholar 

  • Racette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., & Perlmutter, J. S. (2001). Welding-related parkinsonism: Clinical features, treatment, and pathophysiology. Neurology, 56, 8–13.

    PubMed  CAS  Google Scholar 

  • Reardan, D. T., Meares, C. F., Goodwin, D. A., McTigue, M., David, G. S., Stone, M. R., et al. (1985). Antibodies against metal chelates. Nature, 316, 265–268.

    PubMed  CAS  Google Scholar 

  • Ritter, J., & Marti-Feced, C. (1960). Trials and results of the treatment of patients with manganese poisoning and of the prevention of manganese poisoning by EDTA calcium or calcitetracemate disodium. Archives des maladies professionnelles, 21, 115–130.

    CAS  Google Scholar 

  • Rodier, J. (1955). Manganese poisoning in Moroccan miners. British Journal of Industrial Medicine, 12, 21–35.

    PubMed  CAS  Google Scholar 

  • Rodier, J., Mallet, R., & Rodi, L. (1954). Detoxicating effects of ethylenediamine tetraacetate of calcium in experimental manganese poisoning. Archives des maladies professionnelles, 15, 210–223.

    CAS  Google Scholar 

  • Roels, H., Sarhan, M. J., Hanotiau, I., de Fays, M., Genet, P., Bernard, A., et al. (1985). Preclinical toxic effects of manganese in workers from a Mn salts and oxides producing plant. Science of the Total Environment, 42, 201–206.

    PubMed  CAS  Google Scholar 

  • Rommelfanger, K. S., & Weinshenker, D. (2007). Norepinephrine: The redheaded stepchild of Parkinson’s disease. Biochemical Pharmacology, 74, 177–190.

    PubMed  CAS  Google Scholar 

  • Rosenstock, H. A., Simons, D. G., & Meyer, J. S. (1971). Chronic manganism. Neurologic and laboratory studies during treatment with levodopa. JAMA, 217, 1354–1358.

    PubMed  CAS  Google Scholar 

  • Roth, J. A., & Garrick, M. D. (2003). Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochemical Pharmacology, 66, 1–13.

    PubMed  CAS  Google Scholar 

  • Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., et al. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 18578–18583.

    PubMed  CAS  Google Scholar 

  • Sánchez, D. J., Gómez, M., Domingo, J. L., Llobet, J. M., & Corbella, J. (1995). Relative efficacy of chelating agents on excretion and tissue distribution of manganese in mice. Journal of Applied Toxicology, 15, 285–288.

    PubMed  Google Scholar 

  • Sanotsky, Y., Lesyk, R., Fedoryshyn, L., Komnatska, I., Matviyenko, Y., & Fahn, S. (2007). Manganic encephalopathy due to “ephedrone” abuse. Movement Disorders, 22, 1337–1343.

    PubMed  Google Scholar 

  • Sata, F., Araki, S., Murata, K., & Aono, H. (1998). Behavior of heavy metals in human urine and blood following calcium disodium ethylenediamine tetraacetate injection: Observations in metal workers. Journal of Toxicology and Environmental Health. Part A, 54, 167–178.

    PubMed  CAS  Google Scholar 

  • Scholten, J. M. (1953). On manganese encephalopathy; description of a case. Folia psychiatrica, neurologica et neurochirurgica Neerlandica, 56, 878–884.

    PubMed  CAS  Google Scholar 

  • Selikhova, M., Fedoryshyn, L., Matviyenko, Y., Komnatska, I., Kyrylchuk, M., Krolicki, L., et al. (2008). Parkinsonism and dystonia caused by the illicit use of ephedrone—a longitudinal study. Movement Disorders, 23, 2224–2231.

    PubMed  Google Scholar 

  • Sengupta, A., Mense, S. M., Lan, C., Zhou, M., Mauro, R. E., Kellerman, L., et al. (2007). Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology, 28, 478–489.

    PubMed  CAS  Google Scholar 

  • Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5, 67–76.

    PubMed  CAS  Google Scholar 

  • Seth, P. K., & Chandra, S. V. (1988). Neurotoxic effects of manganese. III Neuropathological changes in manganese intoxication. In S. C. Bondy & K. N. Prasad (Eds.), Metal neurotoxicity (pp. 22–23). Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Shinotoh, H., Snow, B. J., Chu, N. S., Huang, C. C., Lu, C. S., Lee, C., et al. (1997). Presynaptic and postsynaptic striatal dopaminergic function in patients with manganese intoxication: A positron emission tomography study. Neurology, 48, 1053–1056.

    PubMed  CAS  Google Scholar 

  • Shinotoh, H., Snow, B. J., Hewitt, K. A., Pate, B. D., Doudet, D., Nugent, R., et al. (1995). MRI and PET studies of manganese-intoxicated monkeys. Neurology, 45, 1199–1204.

    PubMed  CAS  Google Scholar 

  • Shishova, E. Y., Di Costanzo, L., Emig, F. A., Ash, D. E., & Christianson, D. W. (2009). Probing the specificity determinants of amino acid recognition by arginase. Biochemistry, 48, 121–131.

    PubMed  CAS  Google Scholar 

  • Sikk, K., Taba, P., Haldre, S., Bergquist, J., Nyholm, D., Zjablov, G., et al. (2007). Irreversible motor impairment in young addicts—ephedrone, manganism or both? Acta Neurologica Scandinavica, 115, 385–389.

    PubMed  CAS  Google Scholar 

  • Singh, J., Husain, R., Tandon, S. K., Seth, P. K., & Chandra, S. V. (1974). Biochemical and histopathological alterations in early manganese toxicity in rats. Environmental Physiology and Biochemistry, 4, 16–23.

    CAS  Google Scholar 

  • Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in Neurosciences, 13, 259–265.

    PubMed  CAS  Google Scholar 

  • Smith, D., Gwiazda, R., Bowler, R., Roels, H., Park, R., Taicher, C., et al. (2007). Biomarkers of Mn exposure in humans. American Journal of Industrial Medicine, 50, 801–811.

    PubMed  CAS  Google Scholar 

  • Snyder, R. M., Mirabelli, C. K., & Crooke, S. T. (1986). Cellular association, intracellular distribution, and efflux of auranofin via sequential ligand exchange reactions. Biochemical Pharmacology, 35, 923–932.

    PubMed  CAS  Google Scholar 

  • Sonnewald, U., Westergaard, N., Krane, J., Unsgård, G., Petersen, S. B., & Schousboe, A. (1991). First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neuroscience Letters, 128, 235–239.

    PubMed  CAS  Google Scholar 

  • Spranger, M., Schwab, S., Desiderato, S., Bonmann, E., Krieger, D., & Fandrey, J. (1998). Manganese augments nitric oxide synthesis in murine astrocytes: A new pathogenetic mechanism in manganism? Experimental Neurology, 149, 277–283.

    PubMed  CAS  Google Scholar 

  • Struve, M. F., McManus, B. E., Wong, B. A., & Dorman, D. C. (2007). Basal ganglia neurotransmitter concentrations in rhesus monkeys following subchronic manganese sulfate inhalation. American Journal of Industrial Medicine, 50, 772–778.

    PubMed  CAS  Google Scholar 

  • Takeda, A. (2003). Manganese action in brain function. Brain Research. Brain Research Reviews, 41, 79–87.

    PubMed  CAS  Google Scholar 

  • Tandon, S. K., & Khandelwal, S. (1982). Chelation in metal intoxication. XII. Antidotal efficacy of chelating agents on acute toxicity of manganese. Archives of Toxicology, 50, 19–25.

    PubMed  CAS  Google Scholar 

  • Tekkok, S. B., Brown, A. M., Westenbroek, R., Pellerin, L., & Ransom, B. R. (2005). Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. Journal of Neuroscience Research, 81, 644–652.

    PubMed  CAS  Google Scholar 

  • Tjalkens, R. B., Liu, X., Mohl, B., Wright, T., Moreno, J. A., Carbone, D. L., et al. (2008). The peroxisome proliferator-activated receptor-gamma agonist 1, 1-bis(3′-indolyl)-1-(p-trifluoromethylphenyl)methane suppresses manganese-induced production of nitric oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. Journal of Neuroscience Research, 86, 618–629.

    PubMed  CAS  Google Scholar 

  • Tjalkens, R. B., Zoran, M. J., Mohl, B., & Barhoumi, R. (2006). Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics. Brain Research, 1113, 210–219.

    PubMed  CAS  Google Scholar 

  • Troadec, J. D., Marien, M., Darios, F., Hartmann, A., Ruberg, M., Colpaert, F., et al. (2001). Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. Journal of Neurochemistry, 79, 200–210.

    PubMed  CAS  Google Scholar 

  • Tuschl, K., Mills, P. B., Parsons, H., Malone, M., Fowler, D., Bitner-Glindzicz, M., et al. (2008). Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia—a new metabolic disorder. Journal of Inherited Metabolic Disease, 31, 151–163.

    CAS  Google Scholar 

  • von Jaksch, R. (1907). Uber mangantoxikosen und manganophobie. Münchener medizinische Wochenschrift, 20, 969–972.

    Google Scholar 

  • Voss, H. (1939). Progressive bulbarparalyse und amyotrophische lateralsklerose nach chronischer manganvergiftung. Archives of Bewerbepath Bewerbehyg, 9, 464–476.

    CAS  Google Scholar 

  • Walsh, M. P. (2007). The global experience with lead in gasoline and the lessons we should apply to the use of MMT. American Journal of Industrial Medicine, 50, 853–860.

    PubMed  CAS  Google Scholar 

  • Wang, X. (2003). Analysis of health conditions of 1160 welders. Occupation and Health. 19.

  • Wang, D., Zhou, W., & Wang, S. (2001). Hazard of manganese exposure to the welders. Chinese Journal of Industrial Medicine, 14, 114–115.

    Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., et al. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114, 124–129.

    PubMed  CAS  Google Scholar 

  • Wedler, F. C., Ley, B. W., & Grippo, A. A. (1989). Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochemical Research, 14, 1129–1135.

    PubMed  CAS  Google Scholar 

  • Woolf, A., Wright, R., Amarasiriwardena, C., & Bellinger, D. (2002). A child with chronic manganese exposure from drinking water. Environmental Health Perspectives, 110, 613–616.

    PubMed  Google Scholar 

  • Wynter, J. E. (1962). The prevention of manganese poisoning. Industrial Medicine and Surgery, 31, 308–310.

    PubMed  CAS  Google Scholar 

  • Xu, B., Xu, Z. F., & Deng, Y. (2009). Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. Experimental and Toxicologic Pathology [Epub ahead of print]. PMID: 19540097.

  • Yamada, M., Ohno, S., Okayasu, I., Okeda, R., Hatakeyama, S., Watanabe, H., et al. (1986). Chronic manganese poisoning: A neuropathological study with determination of manganese distribution in the brain. Acta Neuropathologica, 70, 273–278.

    PubMed  CAS  Google Scholar 

  • Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., Gallorini, M., et al. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 9843–9848.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Zhou, Z., & Fu, J. (2003). Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environmental Research, 93, 149–157.

    PubMed  CAS  Google Scholar 

  • Zheng, W., Ren, S., & Graziano, J. H. (1998). Manganese inhibits mitochondrial aconitase: A mechanism of manganese neurotoxicity. Brain Research, 799, 334–342.

    PubMed  CAS  Google Scholar 

  • Zwingmann, C., Leibfritz, D., & Hazell, A. S. (2003). Energy metabolism in astrocytes and neurons treated with manganese: Relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. Journal of Cerebral Blood Flow and Metabolism, 23, 756–771.

    PubMed  CAS  Google Scholar 

  • Zwingmann, C., Leibfritz, D., & Hazell, A. S. (2004). Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: An ex vivo nuclear magnetic resonance study using [1–13C]glucose. Neurotoxicology, 25, 573–587.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge partial support by grants from NIEHS 10563 and DoD W81XWH-05-1-0239 (MA), NINDS 061309-01 (KME) and NIEHS 012941 (RT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12017-009-8084-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschner, M., Erikson, K.M., Hernández, E.H. et al. Manganese and its Role in Parkinson’s Disease: From Transport to Neuropathology. Neuromol Med 11, 252–266 (2009). https://doi.org/10.1007/s12017-009-8083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8083-0

Keywords

Navigation