Skip to main content

Advertisement

Log in

Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMAIII), which accumulates in glial cells without compromising cell viability. MMAIII LD50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMAIII concentrations (50–1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMAIII concentrations that also induced TNF-α over-expression. Other effects of MMAIII on cortical astrocytes included increased proliferative and metabolic activity. All tested MMAIII concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMAIII induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Watanabe T, Hirano S (2013) Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87:969–979

    Article  CAS  PubMed  Google Scholar 

  2. Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 279:32700–32708

    Article  CAS  PubMed  Google Scholar 

  3. Xi S, Sun W, Wang F, Jin Y, Sun G (2009) Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83:549–556

    Article  CAS  PubMed  Google Scholar 

  4. Jin Y, Xi S, Li X, Lu C, Li G, Xu Y, Qu C, Niu Y, Sun G (2006) Arsenic speciation transported through the placenta from mother mice to their newborn pups. Environ Res 101:349–355

    Article  CAS  PubMed  Google Scholar 

  5. Baum L, Chan IH, Cheung SK, Goggins WB, Mok V, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Zee BC, Cheng W, Chan MH, Szeto S, Lui V, Tsoh J, Bush AI, Lam CW, Kwok T (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23:173–179

    Article  CAS  PubMed  Google Scholar 

  6. Brinkel J, Khan MMH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6:1609–1619

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piao FY, Ma N, Hiraku Y, Murata M, Oikawa S, Cheng FY, Zhong LF, Yamauchi T, Kawanishi S, Yokoyama K (2005) Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levels. J Occup Health 47:445–449

    Article  CAS  PubMed  Google Scholar 

  8. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26:823–832

    Article  CAS  PubMed  Google Scholar 

  9. Craft S, Foster TC, Landfield PW, Maier SF, Resnick SM, Yaffe K (2012) Session III: mechanisms of age-related cognitive change and targets for intervention: inflammatory, oxidative, and metabolic processes. J Gerontol A Biol Sci Med Sci 67:754–759

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martinez EJ, Kolb BL, Bell A, Savage DD, Allan AM (2008) Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 29:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dani SU (2010) Arsenic for the fool: an exponential connection. Sci Total Environ 408:1842–1846

    Article  CAS  PubMed  Google Scholar 

  12. O’Bryant SE, Edwards M, Menon CV, Gong G, Barber R (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a project FRONTIER study. Int J Environ Res Public Health 8:861–874

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Finley EJ, Ali AM, Allan AM (2009) Learning deficits in C57BL/6 J mice following perinatal arsenic exposure: consequence of lower corticosterone receptor levels? Pharmacol Biochem Behav 94:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogers JT, Lahiri DK (2004) Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets 5:535–551

    Article  CAS  PubMed  Google Scholar 

  15. Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, Bhattacharya S, Kandjanapa K, Soontararuks S, Nookabkaew S, Mahidol C, Ruchirawat M, Samson LD (2007) Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3:e207

    Article  PubMed  PubMed Central  Google Scholar 

  16. Escudero-Lourdes C, Medeiros MK, Cardenas-Gonzalez MC, Wnek SM, Gandolfi JA (2010) Low level exposure to monomethyl arsonous acid-induced the over-production of inflammation-related cytokines and the activation of cell signals associated with tumor progression in a urothelial cell model. Toxicol Appl Pharmacol 244:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi Y, Zhang M, Li H, Frank JA, Dai L, Liu H, Zhang Z, Wang C, Chen G (2014) Autophagy inhibition by sustained overproduction of IL6 contributes to arsenic carcinogenesis. Cancer Res 74:3740–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  20. De Strooper B (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90:465–494

    Article  PubMed  Google Scholar 

  21. Sastre M, Walter J, Gentleman SM (2008) Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Avila-Munoz E, Arias C (2014) When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev 18:29–40

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, O’Connor T, Vassar R (2011) The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz JP, Wilson DJ (1992) Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 5:75–80

    Article  CAS  PubMed  Google Scholar 

  25. Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwerdtle T, Walter I, Mackiw I, Hartwig A (2003) Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24:967–974

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berridge MV, Tan AS (1992) The protein kinase C inhibitor, calphostin C, inhibits succinate-dependent mitochondrial reduction of MTT by a mechanism that does not involve protein kinase C. Biochem Biophys Res Commun 185:806–811

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG (2015) Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci 9:191

    PubMed  PubMed Central  Google Scholar 

  30. Rodriguez VM, Carrizales L, Jimenez-Capdeville ME, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55:301–308

    Article  CAS  PubMed  Google Scholar 

  31. Jana K, Jana S, Samanta PK (2006) Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol 4:9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagaraja TN, Desiraju T (1993) Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult rats. Bull Environ Contam Toxicol 50:100–107

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi H, Yuyama A, Ishihara M, Matsusaka N (1987) Effects of arsenic on cholinergic parameters in brain in vitro. Neuropharmacology 26:1707–1713

    Article  CAS  PubMed  Google Scholar 

  34. Zarazua S, Burger S, Delgado JM, Jimenez-Capdeville ME, Schliebs R (2011) Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. Int J Dev Neurosci 29:389–396

    Article  CAS  PubMed  Google Scholar 

  35. Kruger K, Straub H, Hirner AV, Hippler J, Binding N, Musshoff U (2009) Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicol Appl Pharmacol 236:115–123

    Article  PubMed  Google Scholar 

  36. Vahidnia A, van der Straaten RJ, Romijn F, van Pelt J, van der Voet GB, de Wolff FA (2007) Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity. Toxicol In Vitro 21:1104–1112

    Article  CAS  PubMed  Google Scholar 

  37. Giasson BI, Sampathu DM, Wilson CA, Vogelsberg-Ragaglia V, Mushynski WE, Lee VMY (2002) The environmental toxin arsenite induces tau hyperphosphorylation. Biochemistry 41:15376–15387

    Article  CAS  PubMed  Google Scholar 

  38. Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224:130–140

    Article  CAS  PubMed  Google Scholar 

  39. Escudero-Lourdes C (2016) Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: role of oxidative stress and inflammatory responses. Neurotoxicology 53:223–235

    Article  CAS  PubMed  Google Scholar 

  40. Caito SW, Yu Y, Aschner M (2014) Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia. Neurotoxicology 42:1–7

    Article  CAS  PubMed  Google Scholar 

  41. Akinrinade ID, Memudu AE, Ogundele OM, Ajetunmobi OI (2015) Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure. Pathophysiology 22:39–48

    Article  CAS  PubMed  Google Scholar 

  42. Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38

    Article  CAS  PubMed  Google Scholar 

  43. Koehler Y, Luther EM, Meyer S, Schwerdtle T, Dringen R (2014) Uptake and toxicity of arsenite and arsenate in cultured brain astrocytes. J Trace Elem Med Biol 28:328–337

    Article  CAS  PubMed  Google Scholar 

  44. Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, Lopez-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol Sci 122:539–550

    Article  CAS  PubMed  Google Scholar 

  45. Meyer N, Koehler Y, Tulpule K, Dringen R (2013) Arsenate accumulation and arsenate-induced glutathione export in astrocyte-rich primary cultures. Neurochem Int 62:1012–1019

    Article  CAS  PubMed  Google Scholar 

  46. Zhao F, Liao Y, Jin Y, Li G, Lv X, Sun G (2012) Effects of arsenite on glutamate metabolism in primary cultured astrocytes. Toxicol In Vitro 26:24–31

    Article  CAS  PubMed  Google Scholar 

  47. Pal A, Prasad R (2014) Recent discoveries on the functions of astrocytes in the copper homeostasis of the brain: a brief update. Neurotox Res 26:78–84

    Article  CAS  PubMed  Google Scholar 

  48. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R (2013) Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res 38:227–239

    Article  CAS  PubMed  Google Scholar 

  49. Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7:1223–1233

    Article  CAS  PubMed  Google Scholar 

  50. Catanzaro I, Schiera G, Sciandrello G, Barbata G, Caradonna F, Proia P, Di Liegro I (2010) Biological effects of inorganic arsenic on primary cultures of rat astrocytes. Int J Mol Med 26:457–462

    CAS  PubMed  Google Scholar 

  51. Simeonova PP, Hulderman T, Harki D, Luster MI (2003) Arsenic exposure accelerates atherogenesis in apolipoprotein E(−/−) mice. Environ Health Perspect 111:1744–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bunderson M, Brooks DM, Walker DL, Rosenfeld ME, Coffin JD, Beall HD (2004) Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharm 201:32–39

    Article  CAS  Google Scholar 

  53. Trouba KJ, Germolec DR (2004) Micromolar concentrations of sodium arsenite induce cyclooxygenase-2 expression and stimulate p42/44 mitogen-activated protein kinase phosphorylation in normal human epidermal keratinocytes. Toxicol Sci 79:248–257

    Article  CAS  PubMed  Google Scholar 

  54. Lantz RC, Hays AM (2006) Role of oxidative stress in arsenic-induced toxicity. Drug Metab Rev 38:791–804

    Article  CAS  PubMed  Google Scholar 

  55. Aguirre-Bañuelos P, Escudero-Lourdes C, Sanchez-Peña LC, Del Razo LM, Perez-Urizar J (2008) Inorganic arsenic exposure affects pain behavior and inflammatory response in rat. Toxicol Appl Pharmacol 229:937–938

    Google Scholar 

  56. Wu J, Liu J, Waalkes MP, Cheng ML, Li L, Li CX, Yang Q (2008) High dietary fat exacerbates arsenic-induced liver fibrosis in mice. Exp Biol Med (Maywood) 233:377–384

    Article  CAS  Google Scholar 

  57. Gralle M, Ferreira ST (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 82:11–32

    Article  CAS  PubMed  Google Scholar 

  58. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  59. Rossner S, Sastre M, Bourne K, Lichtenthaler SF (2006) Transcriptional and translational regulation of BACE1 expression-implications for Alzheimer’s disease. Prog Neurobiol 79:95–111

    Article  CAS  PubMed  Google Scholar 

  60. Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J (1995) Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci USA 92:3032–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dewji NN, Do C, Bayney RM (1995) Transcriptional activation of Alzheimer’s beta-amyloid precursor protein gene by stress. Brain Res Mol Brain Res 33:245–253

    Article  CAS  PubMed  Google Scholar 

  62. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LN (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274:6421–6431

    Article  CAS  PubMed  Google Scholar 

  63. Ashok A, Rai NK, Tripathi S, Bandyopadhyay S (2015) Exposure to As-, Cd-, and Pb-mixture induces Abeta, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143:64–80

    Article  CAS  PubMed  Google Scholar 

  64. Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging cell 13:1059–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present study was partially supported by Fondo de Apoyo a la Investigacion (FAI), UASLP. No. C14-FAI-04-10.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Escudero-Lourdes.

Ethics declarations

Conflict of Interest

Authors declare to have not conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escudero-Lourdes, C., Uresti-Rivera, E.E., Oliva-González, C. et al. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression. Neurochem Res 41, 2559–2572 (2016). https://doi.org/10.1007/s11064-016-1968-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1968-z

Keywords

Navigation