Skip to main content

Advertisement

Log in

Increased Expression of Mitochondrial Inner-Membrane Protein Mpv17 After Intracerebral Hemorrhage in Adult Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Mpv17 gene encodes a mitochondrial inner-membrane protein that has been implicated in several cell activities. Almost all studies have previously indicated that loss of function or gene-inactivated in Mpv17 can induce the development of disease. Here, we explored the roles of Mpv17 protein in the pathophysiology of intracerebral hemorrhage (ICH). An ICH rat model was established and assessed by behavioral tests. Using western blot and immunohistochemistry, significant up-regulation of Mpv17 was found in neurons in brain areas surrounding the hematoma following ICH. The increase of Mpv17 expression was found to be accompanied by the enhanced expression of p53, Bax, cytochrome c (Cyt c) and active caspase-3, and decreased expression of Bcl-2 in the pathological process of rat ICH. Furthermore, immunofluorescent staining revealed that Mpv17 co-localized with p53, Bax and active caspase-3 in neurons, suggesting its biological function in the process of neuronal apoptosis. Our in vitro study, using Mpv17 RNA interference in primary cortical neurons, indicated that Mpv17 might exert its anti-apoptotic function in neuronal apoptosis. Thus, Mpv17 may play a role in protecting the brain from secondary damage following ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang Z, Yu A, Liu Y, Shen H, Lin C, Lin L, Wang S, Yuan B (2014) Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. Int Immunopharmacol 22(2):522–525. doi:10.1016/j.intimp.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  2. Kuramatsu JB, Huttner HB, Schwab S (2013) Advances in the management of intracerebral hemorrhage. J Neural Transm 120(Suppl 1):S35–S41. doi:10.1007/s00702-013-1040-y

    Article  PubMed  Google Scholar 

  3. Thiex R, Tsirka SE (2007) Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus 22(5):E6

    PubMed  Google Scholar 

  4. Mackenzie JM, Clayton JA (1999) Early cellular events in the penumbra of human spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis 8(1):1–8

    Article  CAS  PubMed  Google Scholar 

  5. Su X, Wang H, Zhu L, Zhao J, Pan H, Ji X (2013) Ethyl pyruvate ameliorates intracerebral hemorrhage-induced brain injury through anti-cell death and anti-inflammatory mechanisms. Neuroscience 245:99–108. doi:10.1016/j.neuroscience.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  6. Ke K, Li L, Rui Y, Zheng H, Tan X, Xu W, Cao J, Xu J, Cui G, Xu G, Cao M (2013) Increased expression of small heat shock protein alphaB-crystallin after intracerebral hemorrhage in adult rats. J Mol Neurosci 51(1):159–169. doi:10.1007/s12031-013-9970-2

    Article  CAS  PubMed  Google Scholar 

  7. Sun H, Li L, Zhou F, Zhu L, Ke K, Tan X, Xu W, Rui Y, Zheng H, Zhou Z, Yang H (2013) The member of high temperature requirement family HtrA2 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats. J Mol Histol 44(4):369–379. doi:10.1007/s10735-013-9489-4

    Article  CAS  PubMed  Google Scholar 

  8. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wan C, Ma X, Shi S, Zhao J, Nie X, Han J, Xiao J, Wang X, Jiang S, Jiang J (2014) Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis. Toxicol Appl Pharmacol 281(3):294–302. doi:10.1016/j.taap.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  10. Kaji S, Murayama K, Nagata I, Nagasaka H, Takayanagi M, Ohtake A, Iwasa H, Nishiyama M, Okazaki Y, Harashima H, Eitoku T, Yamamoto M, Matsushita H, Kitamoto K, Sakata S, Katayama T, Sugimoto S, Fujimoto Y, Murakami J, Kanzaki S, Shiraki K (2009) Fluctuating liver functions in siblings with MPV17 mutations and possible improvement associated with dietary and pharmaceutical treatments targeting respiratory chain complex II. Mol Genet Metab 97(4):292–296. doi:10.1016/j.ymgme.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  11. El-Hattab AW, Scaglia F (2013) Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10(2):186–198. doi:10.1007/s13311-013-0177-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Reuter A, Nestl A, Zwacka RM, Tuckermann J, Waldherr R, Wagner EM, Hoyhtya M, Meyer zum Gottesberge AM, Angel P, Weiher H (1998) Expression of the recessive glomerulosclerosis gene Mpv17 regulates MMP-2 expression in fibroblasts, the kidney, and the inner ear of mice. Mol Biol Cell 9(7):1675–1682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Blakely EL, Butterworth A, Hadden RD, Bodi I, He L, McFarland R, Taylor RW (2012) MPV17 mutation causes neuropathy and leukoencephalopathy with multiple mtDNA deletions in muscle. Neuromuscul Disord 22(7):587–591. doi:10.1016/j.nmd.2012.03.006

    Article  PubMed  Google Scholar 

  14. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, Donnini C (2010) Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet 19(6):1098–1107. doi:10.1093/hmg/ddp581

    Article  CAS  PubMed  Google Scholar 

  15. Binder CJ, Weiher H, Exner M, Kerjaschki D (1999) Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria: a model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am J Pathol 154(4):1067–1075. doi:10.1016/S0002-9440(10)65359-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32(2):143–158. doi:10.1007/s10545-008-1038-z

    Article  CAS  PubMed  Google Scholar 

  17. Spinazzola A, Santer R, Akman OH, Tsiakas K, Schaefer H, Ding X, Karadimas CL, Shanske S, Ganesh J, Di Mauro S, Zeviani M (2008) Hepatocerebral form of mitochondrial DNA depletion syndrome: novel MPV17 mutations. Arch Neurol 65(8):1108–1113. doi:10.1001/archneur.65.8.1108

    Article  PubMed  Google Scholar 

  18. Casalena G, Krick S, Daehn I, Yu L, Ju W, Shi S, Tsai SY, D’Agati V, Lindenmeyer M, Cohen CD, Schlondorff D, Bottinger EP (2014) Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro. Am J Physiol Renal Physiol 306(11):F1372–F1380. doi:10.1152/ajprenal.00608.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Karabiyikoglu M, Hua Y, Keep RF, Ennis SR, Xi G (2004) Intracerebral hirudin injection attenuates ischemic damage and neurologic deficits without altering local cerebral blood flow. J Cereb Blood Flow Metab 24(2):159–166. doi:10.1097/01.WCB.0000100062.36077.84

    Article  CAS  PubMed  Google Scholar 

  20. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126(3):397–425. doi:10.1016/0006-8993(77)90594-7

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Ruan Q, Han S, Xi L, Jiang W, Jiang H, Ostrov DA, Cai J (2014) Discovery of structure-based small molecular inhibitor of alphaB-crystallin against basal-like/triple-negative breast cancer development in vitro and in vivo. Breast Cancer Res Treat 145(1):45–59. doi:10.1007/s10549-014-2940-8

    Article  CAS  PubMed  Google Scholar 

  22. Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46. doi:10.1186/1742-2094-9-46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang J, Dore S (2008) Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 155(4):1133–1141. doi:10.1016/j.neuroscience.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  24. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731. doi:10.1016/S1474-4422(12)70104-7

    Article  CAS  PubMed  Google Scholar 

  25. Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92(4):463–477. doi:10.1016/j.pneurobio.2010.08.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, Vashkevich A, McNamara KA, Valant V, Schwab K, Orzell SC, Bresette LM, Feske SK, Rost NS, Romero JM, Viswanathan A, Chou SH, Greenberg SM, Rosand J, Goldstein JN (2014) Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol 71(2):158–164. doi:10.1001/jamaneurol.2013.5433

    Article  PubMed Central  PubMed  Google Scholar 

  27. Reinhold R, Kruger V, Meinecke M, Schulz C, Schmidt B, Grunau SD, Guiard B, Wiedemann N, van der Laan M, Wagner R, Rehling P, Dudek J (2012) The channel-forming Sym1 protein is transported by the TIM23 complex in a presequence-independent manner. Mol Cell Biol 32(24):5009–5021. doi:10.1128/MCB.00843-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bijarnia-Mahay S, Mohan N, Goyal D, Verma IC (2014) Mitochondrial DNA depletion syndrome causing liver failure. Indian Pediatr 51(8):666–668

    Article  PubMed  Google Scholar 

  29. Lollgen S, Weiher H (2015) The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species. Biol Chem 396(1):13–25. doi:10.1515/hsz-2014-0198

    Article  PubMed  Google Scholar 

  30. Meyer zum Gottesberge AM, Massing T, Hansen S (2012) Missing mitochondrial Mpv17 gene function induces tissue-specific cell-death pathway in the degenerating inner ear. Cell Tissue Res 347(2):343–356. doi:10.1007/s00441-012-1326-7

    Article  CAS  PubMed  Google Scholar 

  31. Gong C, Hoff JT, Keep RF (2000) Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 871(1):57–65

    Article  CAS  PubMed  Google Scholar 

  32. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21(1):92–101. doi:10.1016/j.devcel.2011.06.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331(3):761–777. doi:10.1016/j.bbrc.2005.03.149

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Jin W, Liu X, Fu H, Gong P, Xu J, Cui G, Ni Y, Ke K, Gao Z, Gao Y (2012) Cyclic AMP response element modulator-1 (CREM-1) involves in neuronal apoptosis after traumatic brain injury. J Mol Neurosci 47(2):357–367. doi:10.1007/s12031-012-9761-1

    Article  CAS  PubMed  Google Scholar 

  35. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. doi:10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 81471188). This work is also supported by Nantong Science and Technology project to Aihong Li (No. HS2014032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aisong Guo or Xiaomei Chen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Aihong Li and Lei Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Li, L., Sun, X. et al. Increased Expression of Mitochondrial Inner-Membrane Protein Mpv17 After Intracerebral Hemorrhage in Adult Rats. Neurochem Res 40, 1620–1630 (2015). https://doi.org/10.1007/s11064-015-1644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1644-8

Keywords

Navigation