Skip to main content

Advertisement

Log in

IGSF9 Family Proteins

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene, whereas vertebrates contain two to four genes. In cnidarians, the gene appears to encode a secreted protein, but transmembrane isoforms of the protein have also evolved, and in many species, alternative splicing facilitates the expression of both transmembrane and secreted isoforms. In most species, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle and mammalian IGSF9 proteins are contradictory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walmod PS, Pedersen MV, Berezin V, Bock E (2007) Cell adhesion molecules of the immunoglobulin superfamily in the nervous system. In: Lajtha A, Banik N (eds) Handbook of neurochemistry and molecular neurobiology. Neural protein metabolism and function, 3rd edn. Springer, Berlin, pp 35–151. ISBN: 978-0-387-30379-6

  2. Li DM, Feng YM (2011) Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 128(1):7–21. doi:10.1007/s10549-011-1499-x

    Article  PubMed  CAS  Google Scholar 

  3. Redies C, Neudert F, Lin J (2011) Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum 10(3):393–408. doi:10.1007/s12311-010-0207-4

    Article  PubMed  CAS  Google Scholar 

  4. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124(8):1183–1193. doi:10.1242/jcs.064618

    Article  PubMed  CAS  Google Scholar 

  5. Zhong X, Rescorla FJ (2012) Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 24(2):393–401. doi:10.1016/j.cellsig.2011.10.005

    Article  PubMed  CAS  Google Scholar 

  6. Zhang Y, Yeh J, Richardson PM, Bo X (2008) Cell adhesion molecules of the immunoglobulin superfamily in axonal regeneration and neural repair. Restor Neurol Neurosci 26(2–3):81–96

    PubMed  CAS  Google Scholar 

  7. Cameron S, Rao Y (2010) Molecular mechanisms of tiling and self-avoidance in neural development. Mol Brain 3(1):28

    Article  PubMed  Google Scholar 

  8. Tallafuss A, Constable JR, Washbourne P (2010) Organization of central synapses by adhesion molecules. Eur J Neurosci 32(2):198–206. doi:10.1111/j.1460-9568.2010.07340.x

    Article  PubMed  Google Scholar 

  9. Bottos A, Rissone A, Bussolino F, Arese M (2011) Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci 68(16):2655–2666. doi:10.1007/s00018-011-0664-z

    Article  PubMed  CAS  Google Scholar 

  10. Chen Y, Aulia S, Li L, Tang BL (2006) AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res Rev 51(2):265–274

    Article  PubMed  CAS  Google Scholar 

  11. Harwood A, Coates JC (2004) A prehistory of cell adhesion. Curr Opin Cell Biol 16(5):470–476. doi:10.1016/j.ceb.2004.07.011

    Article  PubMed  CAS  Google Scholar 

  12. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  13. Jorgensen OS, Bock E (1974) Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23(4):879–880

    Article  PubMed  CAS  Google Scholar 

  14. Rutishauser U, Thiery JP, Brackenbury R, Sela BA, Edelman GM (1976) Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci U S A 73(2):577–581

    Article  PubMed  CAS  Google Scholar 

  15. Doudney K, Murdoch JN, Braybrook C, Paternotte C, Bentley L, Copp AJ, Stanier P (2002) Cloning and characterization of Igsf9 in mouse and human: a new member of the immunoglobulin superfamily expressed in the developing nervous system. Genomics 79(5):663–670

    Article  PubMed  CAS  Google Scholar 

  16. Nagase T, Kikuno R, Ishikawa KI, Hirosawa M, Ohara O (2000) Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7(1):65–73

    Article  PubMed  CAS  Google Scholar 

  17. Bodily KD, Morrison CM, Renden RB, Broadie K (2001) A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J Neurosci 21(9):3113–3125

    PubMed  CAS  Google Scholar 

  18. Kikuno R, Nagase T, Ishikawa K, Hirosawa M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (1999) Prediction of the coding sequences of unidentified human genes. XIV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6(3):197–205

    Article  PubMed  CAS  Google Scholar 

  19. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99(26):16899–16903. doi:10.1073/pnas.242603899

    Article  PubMed  Google Scholar 

  20. Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13(10):2265–2270. doi:10.1101/gr.1293003

    Article  PubMed  CAS  Google Scholar 

  21. ClustalW2. http://www.ebi.ac.uk/Tools/msa/clustalw2/. Accessed Aug 2012

  22. ClustalW2—phylogeny. http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/. Accessed Aug 2012

  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  24. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(suppl 2):W695–W699. doi:10.1093/nar/gkq313

    Article  PubMed  CAS  Google Scholar 

  25. Treeview. http://taxonomy.zoology.gla.ac.uk/rod/treeview.html. Accessed Aug 2012

  26. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358

    PubMed  CAS  Google Scholar 

  27. Eukaryotic linear motifs, ELM. http://elm.eu.org/. Accessed Aug 2012

  28. Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, Toedt G, Uyar B, Seiler M, Budd A, Jödicke L, Dammert MA, Schroeter C, Hammer M, Schmidt T, Jehl P, McGuigan C, Dymecka M, Chica C, Luck K, Via A, Chatr-aryamontri A, Haslam N, Grebnev G, Edwards RJ, Steinmetz MO, Meiselbach H, Diella F, Gibson TJ (2011) ELM—the database of eukaryotic linear motifs. Nucleic Acids Res. doi:10.1093/nar/gkr1064

    Google Scholar 

  29. Simple Modular Architecture Research tool, SMART. http://smart.embl-heidelberg.de/. Accessed Aug 2012

  30. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305. doi:10.1093/nar/gkr931

    Article  PubMed  CAS  Google Scholar 

  31. SignalP 4.0. http://www.cbs.dtu.dk/services/SignalP/. Accessed Aug 2012

  32. TMHMM Server v. 2.0. http://www.cbs.dtu.dk/services/TMHMM/. Accessed Aug 2012

  33. NetNGlyc 1.0. http://www.cbs.dtu.dk/services/NetNGlyc/. Accessed Aug 2012

  34. NetOGlyc 3.1. http://www.cbs.dtu.dk/services/NetOGlyc/. Accessed Aug 2012

  35. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21(11):639–644. doi:10.1093/protein/gzn039

    Article  PubMed  CAS  Google Scholar 

  36. Ren J, Gao X, Jin C, Zhu M, Wang X, Shaw A, Wen L, Yao X, Xue Y (2009) Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9(12):3409–3412. doi:10.1002/pmic.200800646

    Article  PubMed  CAS  Google Scholar 

  37. Prenylation Prediction Suite, PrePS. http://mendel.imp.ac.at/sat/PrePS/index.html. Accessed Aug 2012

  38. Maurer-Stroh S, Eisenhaber F (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6(6):R55

    Article  PubMed  Google Scholar 

  39. Prosite MyDomains Image Creator. http://prosite.expasy.org/cgi-bin/prosite/mydomains/. Accessed Aug 2012

  40. GENO3D. http://pbil.ibcp.fr/htm/index.php. Accessed Aug 2012

  41. Combet C, Jambon M, Deléage G, Geourjon C (2002) Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18(1):213–214. doi:10.1093/bioinformatics/18.1.213

    Article  PubMed  CAS  Google Scholar 

  42. PyMOL Molecular Graphics System. http://www.pymol.org/pymol. Accessed June 2012

  43. Mishra A, Knerr B, Paixao S, Kramer ER, Klein R (2008) The protein dendrite arborization and synapse maturation 1 (Dasm-1) is dispensable for dendrite arborization. Mol Cell Biol 28(8):2782–2791

    Article  PubMed  CAS  Google Scholar 

  44. Superfamily: HMM library and genome assignments server. Accessed Aug 2012

  45. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919. doi:10.1006/jmbi.2001.5080

    Article  PubMed  CAS  Google Scholar 

  46. Kristiansen LV, Hortsch M (2010) Fasciclin II: the NCAM Ortholog in Drosophila melanogaster. In: Berezin V (ed) Structure and function of the neural cell adhesion molecule NCAM, vol 663. Springer, Berlin, pp 387–401

    Chapter  Google Scholar 

  47. Owczarek SE, Kristiansen LV, Hortsch M, Walmod PS (2009) Cell adhesion molecules of the NCAM family and their role at synapses. In: Hortsch M, Umemori H (eds) The sticky synapse, 1st edn. Springer, Berlin, pp 265–299. ISBN: 978-0-387-92708-4

  48. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945. doi:10.1002/bies.20293

    Article  PubMed  CAS  Google Scholar 

  49. Makino T, McLysaght A (2010) Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proc Natl Acad Sci 107(20):9270–9274. doi:10.1073/pnas.0914697107

    Article  PubMed  CAS  Google Scholar 

  50. Vogel C, Teichmann SA, Chothia C (2003) The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Development 130(25):6317–6328. doi:10.1242/dev.00848

    Article  PubMed  CAS  Google Scholar 

  51. Al-Anzi B, Wyman RJ (2009) The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding. Neural Dev 4:31

    Article  PubMed  Google Scholar 

  52. Wormbase. Accessed Aug 2012

  53. Bork P, Holm L, Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242(4):309–320. doi:10.1006/jmbi.1994.1582

    PubMed  CAS  Google Scholar 

  54. Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14(19–20):949–955. doi:10.1016/j.drudis.2009.06.007

    Article  PubMed  CAS  Google Scholar 

  55. Connor RM, Allen CL, Devine CA, Claxton C, Key B (2005) BOC, brother of CDO, is a dorsoventral axon-guidance molecule in the embryonic vertebrate brain. J Comp Neurol 485(1):32–42. doi:10.1002/cne.20503

    Article  PubMed  CAS  Google Scholar 

  56. Millard SS, Zipursky SL (2008) Dscam-mediated repulsion controls tiling and self-avoidance. Curr Opin Neurobiol 18(1):84–89. doi:10.1016/j.conb.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  57. Muller D, Mendez P, Deroo M, Klauser P, Steen S, Poglia L (2010) Role of NCAM in spine dynamics and synaptogenesis. Adv Exp Med Biol 663:245–256. doi:10.1007/978-1-4419-1170-4_16

    Article  PubMed  CAS  Google Scholar 

  58. Nguyen-Ba-Charvet KT, Chedotal A (2002) Role of slit proteins in the vertebrate brain. J Physiol Paris 96(1–2):91–98

    Article  PubMed  CAS  Google Scholar 

  59. Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K, Funabiki K, Koyasu T, Kajimura N, Miyoshi T, Sawai H, Kobayashi K, Tani A, Toda T, Usukura J, Tano Y, Fujikado T, Furukawa T (2008) Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 11(8):923–931. doi:10.1038/nn.2160

    Article  PubMed  CAS  Google Scholar 

  60. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99(7):1304–1310. doi:10.1111/j.1349-7006.2008.00839.x

    Article  PubMed  CAS  Google Scholar 

  61. Vicente Miranda H, Outeiro TF (2010) The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 221(1):13–25. doi:10.1002/path.2682

    Article  PubMed  Google Scholar 

  62. Dani N, Broadie K (2012) Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol 72(1):2–21. doi:10.1002/dneu.20891

    Article  PubMed  CAS  Google Scholar 

  63. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280. doi:10.1007/s00441-009-0834-6

    Article  PubMed  CAS  Google Scholar 

  64. Fukata Y, Fukata M (2010) Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 11(3):161–175. doi:10.1038/nrn2788

    Article  PubMed  CAS  Google Scholar 

  65. Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157(3):521–532

    Article  PubMed  CAS  Google Scholar 

  66. Kulahin N, Grunnet LG, Lundh M, Christensen DP, Jorgensen R, Heding A, Billestrup N, Berezin V, Bock E, Mandrup-Poulsen T (2011) Direct demonstration of NCAM cis-dimerization and inhibitory effect of palmitoylation using the BRET(2) technique. FEBS Lett 585(1):58–64. doi:10.1016/j.febslet.2010.11.043

    Google Scholar 

  67. Walmod PS, Kolkova K, Berezin V, Bock E (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29(11):2015–2035

    Article  PubMed  CAS  Google Scholar 

  68. Aricescu AR, Jones EY (2007) Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 19(5):543–550. doi:10.1016/j.ceb.2007.09.010

    Article  PubMed  CAS  Google Scholar 

  69. Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428(2):133–145. doi:10.1042/bj20100158

    Article  PubMed  CAS  Google Scholar 

  70. Shi SH, Cox DN, Wang D, Jan LY, Jan YN (2004) Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). Proc Natl Acad Sci U S A 101(36):13341–13345

    Article  PubMed  CAS  Google Scholar 

  71. Staub E, Rosenthal A, Hinzmann B (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 16(4):435–456

    Article  PubMed  CAS  Google Scholar 

  72. Shi SH, Cheng T, Jan LY, Jan YN (2004) The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. Proc Natl Acad Sci U S A 101(36):13346–13351

    Article  PubMed  CAS  Google Scholar 

  73. Taylor TD, Noguchi H, Totoki Y, Toyoda A, Kuroki Y, Dewar K, Lloyd C, Itoh T, Takeda T, Kim DW, She X, Barlow KF, Bloom T, Bruford E, Chang JL, Cuomo CA, Eichler E, FitzGerald MG, Jaffe DB, LaButti K, Nicol R, Park HS, Seaman C, Sougnez C, Yang X, Zimmer AR, Zody MC, Birren BW, Nusbaum C, Fujiyama A, Hattori M, Rogers J, Lander ES, Sakaki Y (2006) Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature 440(7083):497–500. doi:10.1038/nature04632

    Article  PubMed  CAS  Google Scholar 

  74. Flybase. Accessed Aug 2012

  75. McQuilton P, St. Pierre SE, Thurmond J, FlyBase Consortium (2012) FlyBase 101—the basics of navigating FlyBase. Nucleic Acids Res 40(D1):D706–D714. doi:10.1093/nar/gkr1030

    Article  PubMed  CAS  Google Scholar 

  76. Karagogeos D (2003) Neural GPI-anchored cell adhesion molecules. Front Biosci 8:s1304–s1320

    Article  PubMed  Google Scholar 

  77. Ferguson K, Long H, Cameron S, Chang WT, Rao Y (2009) The conserved Ig superfamily member turtle mediates axonal tiling in Drosophila. J Neurosci 29(45):14151–14159

    Article  PubMed  CAS  Google Scholar 

  78. Long H, Ou Y, Rao Y, van Meyel DJ (2009) Dendrite branching and self-avoidance are controlled by turtle, a conserved IgSF protein in Drosophila. Development 136(20):3475–3484

    Article  PubMed  CAS  Google Scholar 

  79. Sulkowski MJ, Iyer SC, Kurosawa MS, Iyer EP, Cox DN (2011) Turtle functions downstream of cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLoS ONE 6(7):e22611. doi:10.1371/journal.pone.0022611

    Article  PubMed  CAS  Google Scholar 

  80. Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci 98(26):15336–15341. doi:10.1073/pnas.011314898

    Article  PubMed  CAS  Google Scholar 

  81. Okada T, Yamada N, Tsuzuki K, Horikawa HPM, Tanaka K, Ozawa S (2003) Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning. Eur J Neurosci 17(2):341–349. doi:10.1046/j.1460-9568.2003.02458.x

    Article  PubMed  Google Scholar 

  82. Grueber WB, Jan LY, Jan YN (2003) Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112(6):805–818. doi:10.1016/s0092-8674(03)00160-0

    Article  PubMed  CAS  Google Scholar 

  83. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M, Redondo JM, Bovolenta P, Walsh CA, Nieto M (2010) Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66(4):523–535. doi:10.1016/j.neuron.2010.04.038

    Article  PubMed  CAS  Google Scholar 

  84. Li N, Zhao C-T, Wang Y, Yuan X-B (2010) The transcription factor Cux1 regulates dendritic morphology of cortical pyramidal neurons. PLoS ONE 5(5):e10596. doi:10.1371/journal.pone.0010596

    Article  PubMed  Google Scholar 

  85. PaxDb: protein abundance across organisms. Accessed Aug 2012

  86. De Vries M, Cooper HM (2008) Emerging roles for neogenin and its ligands in CNS development. J Neurochem 106(4):1483–1492. doi:10.1111/j.1471-4159.2008.05485.x

    Article  PubMed  Google Scholar 

  87. Dickinson RE, Duncan WC (2010) The SLIT–ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 139(4):697–704. doi:10.1530/rep-10-0017

    Article  PubMed  CAS  Google Scholar 

  88. Shi L, Lee T (2012) Molecular diversity of Dscam and self-recognition. Adv Exp Med Biol 739:262–275. doi:10.1007/978-1-4614-1704-0_17

    Article  PubMed  CAS  Google Scholar 

  89. Nielsen J, Kulahin N, Walmod PS (2010) Extracellular protein interactions mediated by the neural cell adhesion molecule, NCAM: Heterophilic interactions between NCAM and cell adhesion molecules, extracellular matrix proteins, and viruses. In: Berezin V (ed) Structure and function of the neural cell adhesion molecule NCAM, vol 663, pp 23–53

  90. Danielson E, Zhang N, Metallo J, Kaleka K, Shin SM, Gerges N, Lee SH (2012) S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors. J Neurosci 32(20):6967–6980. doi:10.1523/jneurosci.0025-12.2012

    Article  PubMed  CAS  Google Scholar 

  91. Kreienkamp HJ (2008) Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 186:365–380. doi:10.1007/978-3-540-72843-6_15

    Article  PubMed  CAS  Google Scholar 

  92. Zhu H, Casselman A, Reppert SM (2008) Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus). PLoS ONE 3(1):e1345

    Article  PubMed  Google Scholar 

  93. McCormick A, Leipzig N (2012) Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 40(3):578–597. doi:10.1007/s10439-011-0505-0

    Article  PubMed  Google Scholar 

  94. Grueber WB, Sagasti A (2010) Self-avoidance and tiling: mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2(9):a001750. doi:10.1101/cshperspect.a001750

    Article  PubMed  Google Scholar 

  95. Gao FB (2007) Molecular and cellular mechanisms of dendritic morphogenesis. Curr Opin Neurobiol 17(5):525–532. doi:10.1016/j.conb.2007.08.004

    Article  PubMed  CAS  Google Scholar 

  96. Ichinohe N, Yoshihara Y, Hashikawa T, Rockland KS (2003) Developmental study of dendritic bundles in layer 1 of the rat granular retrosplenial cortex with special reference to a cell adhesion molecule, OCAM. Eur J Neurosci 18(7):1764–1774

    Article  PubMed  Google Scholar 

  97. Winther M, Berezin V, Walmod PS (2012) NCAM2/OCAM/RNCAM: cell adhesion molecule with a role in neuronal compartmentalization. Int J Biochem Cell Biol 44(3):441–446. doi:10.1016/j.biocel.2011.11.020

    Article  PubMed  CAS  Google Scholar 

  98. Smith AP, Hoek K, Becker D (2005) Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther 4(9):1018–1029

    Article  PubMed  CAS  Google Scholar 

  99. Bowden NA, Croft A, Scott RJ (2007) Gene expression profiling in familial adenomatous polyposis adenomas and desmoid disease. Hered Cancer Clin Pract 5(2):79–96. doi:10.1186/1897-4287-5-2-79

    Article  PubMed  CAS  Google Scholar 

  100. Kim JH, Kim HN, Lee KT, Lee JK, Choi SH, Paik SW, Rhee JC, Lowe AW (2008) Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumor Biol 29:41–49

    Article  CAS  Google Scholar 

  101. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM (2012) High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci. doi:10.1073/pnas.1117135109

    Google Scholar 

  102. Woodfield GW, Chen Y, Bair TB, Domann FE, Weigel RJ (2010) Identification of primary gene targets of TFAP2C in hormone responsive breast carcinoma cells. Genes Chromosom Cancer 49(10):948–962. doi:10.1002/gcc.20807

    Article  PubMed  CAS  Google Scholar 

  103. Pomerantz RG, Mirvish ED, Erdos G, Falo LD, Geskin LJ (2010) Novel approach to gene expression profiling in Sézary syndrome. Br J Dermatol 163(5):1090–1094. doi:10.1111/j.1365-2133.2010.09973.x

    Article  PubMed  CAS  Google Scholar 

  104. Uppalapati P, Xiang Y, Huang K (2010) Predicting prognostic markers for glioma using gene co-expression network analysis. Paper presented at the proceedings of the first ACM international conference on bioinformatics and computational biology, Niagara Falls, New York

  105. Zecchini S, Cavallaro U (2010) Neural cell adhesion molecule in cancer: expression and mechanisms. Adv Exp Med Biol 663:319–333. doi:10.1007/978-1-4419-1170-4_20

    Article  PubMed  CAS  Google Scholar 

  106. Zecchini S, Bombardelli L, Decio A, Bianchi M, Mazzarol G, Sanguineti F, Aletti G, Maddaluno L, Berezin V, Bock E, Casadio C, Viale G, Colombo N, Giavazzi R, Cavallaro U (2011) The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol Med 3(8):480–494. doi:10.1002/emmm.201100152

    Article  PubMed  CAS  Google Scholar 

  107. Ferraro T, Golden G, Smith G, Martin J, Lohoff F, Gieringer T, Zamboni D, Schwebel C, Press D, KratzerZhao SH, Berrettini W, Buono R (2004) Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mamm Genome 15(4):239–251

    Article  PubMed  CAS  Google Scholar 

  108. Lau CL, Perreau VM, Chen MJ, Cate HS, Merlo D, Cheung NS, O’Shea RD, Beart PM (2012) Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor Fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 227(3):1199–1211. doi:10.1002/jcp.22838

    Article  PubMed  CAS  Google Scholar 

  109. Peterson SM, Zhang J, Weber G, Freeman JL (2011) Global gene expression analysis reveals dynamic and developmental stage-dependent enrichment of lead-induced neurological gene alterations. Environ Health Perspect 119(5):615–621. doi:10.1289/ehp.1002590

    Article  PubMed  CAS  Google Scholar 

  110. Klein DC, Bailey MJ, Carter DA, Kim J-s, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S, Rath MF, Møller M, Sugden D, Rangel ZG, Munson PJ, Weller JL, Coon SL (2010) Pineal function: impact of microarray analysis. Mol Cell Endocrinol 314(2):170–183

    Article  PubMed  CAS  Google Scholar 

  111. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. doi:10.1073/pnas.1120658109

    PubMed  Google Scholar 

  112. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488(7412):517–521. doi:10.1038/nature11305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was written in honor of Prof. Elisabeth Bock (Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark) who for many years has dedicated her time to unraveling the function of proteins in the nervous system in general and NCAM1 in particular.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schledermann Walmod.

Additional information

Special Issue: In Honor of Elisabeth Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M., Walmod, P.S. IGSF9 Family Proteins. Neurochem Res 38, 1236–1251 (2013). https://doi.org/10.1007/s11064-013-0999-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0999-y

Keywords

Navigation