Skip to main content

Advertisement

Log in

The Antiepileptic Effect of the Glycolytic Inhibitor 2-Deoxy-d-Glucose is Mediated by Upregulation of KATP Channel Subunits Kir6.1 and Kir6.2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabolic modulation of neuronal excitability is becoming increasingly important as an antiepileptic therapy. It was reported that the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) and the activation of the ATP-sensitive potassium ion channel (KATP channel) had an antiepileptic effect in models of epilepsy. To explore whether 2-DG exerts an antiepileptic effect through upregulation of the KATP channel subunits Kir6.1 and Kir6.2, the expression of these subunits in hippocampus of five groups of mice with pilocarpine-induced status epilepticus (SE) was evaluated. A seizure group with pilocarpine-kindling convulsions (EP) was compared to similar groups treated with high, medium, and low 2-DG concentrations (100–500 mg/kg) and a normal control group (Con). Kir6.1 and Kir6.2 mRNAs and proteins were analyzed at 4 h, 1 days (acute period), 7 days (latent period), 30, and 60 days (chronic period) following SE. In the seizure group (compared to the Con group), hippocampal expression of Kir6.1 and Kir6.2 increased dramatically at 1, 7, and 30 days, and was further increased after treatment with medium and high dose 2-DG (all P < 0.05). Our results suggest that 2-DG may exert an antiepileptic effect through up-regulation of mRNAs and protein levels of Kir6.1 and Kir6.2, which may therefore be used as molecular targets in the treatment of epilepsy with 2-DG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354

    Article  PubMed  CAS  Google Scholar 

  2. Birbeck G, Chomba E, Atadzhanov M, Mbewe E, Haworth A (2007) The social and economic impact of epilepsy in Zambia: a cross-sectional study. Lancet Neurol 6:39–44

    Article  PubMed  Google Scholar 

  3. Berg AT (2006) Defining intractable epilepsy. Adv Neurol 97:5–10

    PubMed  Google Scholar 

  4. Holmes GL, Zhao Q (2008) Choosing the correct antiepileptic drugs: from animal studies to the clinic. Pediatr Neurol 38:151–162

    Article  PubMed  Google Scholar 

  5. White HS (2003) Preclinical development of antiepileptic drugs: past, present, and future directions. Epilepsia Suppl 7:2–8

    Article  Google Scholar 

  6. Stables JP, Bertram EH, White HS, Coulter DA, Dichter MA, Jacobs MP, Loscher W, Lowenstein DH, Moshe SL, Noebels JL, Davis M (2002) Models for epilepsy and epileptogenesis: report from the NIH workshop, Bethesda, Maryland. Epilepsia 43:1410–1420

    Article  PubMed  Google Scholar 

  7. Stafstrom CE, Roopra A, Sutula TP (2008) Seizure suppression via glycolysis inhibition with 2-deoxy-d-glucose (2-DG). Epilepsia 49:97–100

    Article  PubMed  Google Scholar 

  8. Gasior M, Yankura J, Hartman AL, French A, Rogawski MA (2010) Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose. Epilepsia 51:1385–1394

    Article  PubMed  CAS  Google Scholar 

  9. Stafstrom CE, Ockuly JC, Murphree L, Valley MT, Roopra A, Sutula TP (2009) Anticonvulsant and antiepileptic actions of 2-deoxy-d-glucose in epilepsy models. Ann Neurol 65:435–447

    Article  PubMed  CAS  Google Scholar 

  10. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–227

    Article  PubMed  CAS  Google Scholar 

  11. Lian XY, Khan FA, Stringer JL (2007) Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci 27:12007–12011

    Article  PubMed  CAS  Google Scholar 

  12. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  PubMed  CAS  Google Scholar 

  13. Kimmich GA, Randles J (1976) 2-Deoxyglucose transport by intestinal epithelial cells isolated from chick. J Membrane Biol 27:363–379

    Article  CAS  Google Scholar 

  14. Sols A, Crane RK (1954) Substrate specificity of brain hexokinase. J Biol Chem 210:581–595

    PubMed  CAS  Google Scholar 

  15. Bissonnette P, Gagné H, Blais A, Berteloot A (1996) 2-Deoxyglucose transport and metabolism in Caco-2 cells. Am J Physiol 270:G153–G162

    PubMed  CAS  Google Scholar 

  16. Chen W, Gueron M (1992) The inhibition of bovine heart hexokinase by 2-deoxy-d-glucose-6-phosphate: characterization by 31P NMR and metabolic implications. Biochimie 74:867–873

    Article  PubMed  CAS  Google Scholar 

  17. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546

    Article  PubMed  CAS  Google Scholar 

  18. Hernández-Sánchez C, Basile AS, Fedorova I, Arima H, Stannard B, Fernandez AM, Ito Y, LeRoith D (2001) Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proc Natl Acad Sci USA 98:3549–3554

    Article  PubMed  Google Scholar 

  19. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 27:3618–3625

    Article  PubMed  CAS  Google Scholar 

  20. Mercer RW, Dunham PB (1981) Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78:547–568

    Article  PubMed  CAS  Google Scholar 

  21. Avanzi RD, Cavarsan CF, Santos JG, Hamani C, Mello LE, Covolan L (2010) Basal dendrites are present in newly born dentate granule cells of young but not aged pilocarpine-treated chronic epileptic rats. Neuroscience 27:687–691

    Article  Google Scholar 

  22. Covolan L, Mello LE (2006) Assessment of the progressive nature of cell damage in the pilocarpine model of epilepsy. Braz J Med Biol Res 39:915–924

    Article  PubMed  CAS  Google Scholar 

  23. Bough KJ, Gudi K, Han FT, Rathod AH, Eagles DA (2002) An anticonvulsant profile of the ketogenic diet in the rat. Epilepsy Res 50:313–325

    Article  PubMed  CAS  Google Scholar 

  24. Lian XY, Stringer JL (2004) Inhibition of aconitase in astrocytes increases the sensitivity to chemical convulsants. Epilepsy Res 60:41–52

    Article  PubMed  CAS  Google Scholar 

  25. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782

    Article  PubMed  CAS  Google Scholar 

  26. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11

    Article  PubMed  CAS  Google Scholar 

  27. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995

    Article  PubMed  CAS  Google Scholar 

  28. Cao X, Xiao H, Zhang Y, Zou L, Chu Y, Chu X (2010) 1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res 1347:142–148

    Article  PubMed  CAS  Google Scholar 

  29. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol 514:327–341

    Article  PubMed  CAS  Google Scholar 

  30. Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K, Abe H (2002) Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101:23–32

    Article  PubMed  CAS  Google Scholar 

  31. Liss B, Bruns R, Roeper J (1999) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 18:833–846

    Article  PubMed  CAS  Google Scholar 

  32. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of K(ATP) channel Subunits. Neuron 18:827–838

    Article  PubMed  CAS  Google Scholar 

  33. Liss B, Roeper J (2001) Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol 18:117–127

    Article  PubMed  CAS  Google Scholar 

  34. Soundarapandian MM, Wu D, Zhong X, Petralia RS, Peng L, Tu W, Lu Y (2007) Expression of functional Kir6.1 channels regulates glutamate release at CA3 synapses in generation of epileptic form of seizures. J Neurochem 103:1982–1988

    Article  PubMed  CAS  Google Scholar 

  35. Katsumori H, Ito Y, Higashida H, Hashii M, Minabe Y (1996) Anti- and proconvulsive actions of levcromakalim, an opener of ATP-sensitive K+ channel, in the model of hippocampus-generating partial seizures in rats. Eur J Pharmacol 311:37–44

    Article  PubMed  CAS  Google Scholar 

  36. Gandolfo G, Romettino S, Gottesmann C, van Luijtelaar G, Coenen A, Bidard JN, Lazdunski M (1989) K+ channel openers decrease seizures in genetically epileptic rats. Eur J Pharmacol 167:181–183

    Article  PubMed  CAS  Google Scholar 

  37. Jiang KW, Gao F, Shui QX, Yu ZS, Xia ZZ (2004) Effect of diazoxide on regulation of vesicular and plasma membrane GABA transporter genes and proteins in hippocampus of rats subjected to picrotoxin-induced kindling. Neurosci Res 50:319–329

    Article  PubMed  CAS  Google Scholar 

  38. Ghasemi M, Shafaroodi H, Karimollah AR, Gholipour T, Nezami BG, Ebrahimi F, Dehpour AR (2010) ATP-sensitive potassium channels contribute to the time-dependent alteration in the pentylenetetrazole-induced seizure threshold in diabetic mice. Seizure 19:53–58

    Article  PubMed  Google Scholar 

  39. Jiang K, Shui Q, Xia Z, Yu Z (2004) Changes in the gene and protein expression of K(ATP) channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling. Brain Res Mol Brain Res 128:83–89

    Article  PubMed  CAS  Google Scholar 

  40. Jiang K, Yu Z, Shui Q (2007) The pattern of ATP-sensitive K+ channel subunits, Kir6.2 and SUR1 mRNA expressions in DG region is different from those in CA1-3 regions of chronic epilepsy induced by picrotoxin in rats. Neuropathology 27:531–538

    Article  PubMed  Google Scholar 

  41. Palizvan MR, Fathollahi Y, Semnanian S, Hajezadeh S, Mirnajafizadh J (2001) Differential effects of pentylenetetrazol-kindling on long-term potentiation of population excitatory postsynaptic potentials and population spikes in the CA1 region of rat hippocampus. Brain Res 898:82–90

    Article  PubMed  CAS  Google Scholar 

  42. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NFSC 30971534 and 125 Projects of the Third Xiangya Hospital. The funding agency had no role in study design, data collection, analysis, interpretation of data, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. We confirm that we have read the Journal’s position on the issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Guo, R., Wu, J. et al. The Antiepileptic Effect of the Glycolytic Inhibitor 2-Deoxy-d-Glucose is Mediated by Upregulation of KATP Channel Subunits Kir6.1 and Kir6.2. Neurochem Res 38, 677–685 (2013). https://doi.org/10.1007/s11064-012-0958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0958-z

Keywords

Navigation