Skip to main content
Log in

2-Deoxy-d-Glucose Exhibits Anti-seizure Effects by Mediating the Netrin-G1-KATP Signaling Pathway in Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures. The glycolytic inhibitor 2-deoxy-d-glucose (2-DG) has been reported to exert antiepileptic effects by upregulating KATP subunits (kir6.1 and kir6.2). We evaluated whether 2-DG exhibits anti-seizure effect by mediating the netrin-G1-KATP signaling pathway in epilepsy. In a mouse epilepsy model induced by lithium chloride-pilocarpine, 2-DG intervention increased the mRNA and protein expression levels of kir6.1 and kir6.2, and these increases were significantly reversed after knocking down netrin-G1 expression. Similarly, in cultured neurons with a magnesium-free medium, we found that the frequency of spontaneous postsynaptic potentials (SP) was increased, and in the meanwhile, expression levels of kir6.1 and kir6.2 were increased after pretreatment with 2DG. These effects were remarkably reversed after knocking down netrin-G1. Thus, our findings show that 2DG exhibits anti-seizure effects through the netrin-G1-KATP signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE et al (2014) ILAE official report: a practical clinical definition of epilepsy. EPILEPSIA 55:475–482

    Article  PubMed  Google Scholar 

  2. Tanywe A, Matchawe C, Fernandez R (2016) The experiences of people living with epilepsy in developing countries: a systematic review of qualitative evidence. JBI Database System Rev Implement Rep 14:136–192

    Article  PubMed  Google Scholar 

  3. Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658

    Article  CAS  PubMed  Google Scholar 

  4. Pan Y, Liu G, Fang M, Shen L, Wang L, Han Y et al (2010) Abnormal expression of netrin-G2 in temporal lobe epilepsy neurons in humans and a rat model. Exp Neurol 224:340–346

    Article  CAS  PubMed  Google Scholar 

  5. Yin Y, Miner JH, Sanes JR (2002) Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol Cell Neurosci 19:344–358

    Article  CAS  PubMed  Google Scholar 

  6. Moore SW, Tessier-Lavigne M, Kennedy TE (2007) Netrins and their receptors. Adv Exp Med Biol 621:17–31

    Article  PubMed  Google Scholar 

  7. Meerabux JM, Ohba H, Fukasawa M, Suto Y, Aoki-Suzuki M, Nakashiba T et al (2005) Human netrin-G1 isoforms show evidence of differential expression. GENOMICS 86:112–116

    Article  CAS  PubMed  Google Scholar 

  8. Nakashiba T, Ikeda T, Nishimura S, Tashiro K, Honjo T, Culotti JG et al (2000) Netrin-G1: a novel glycosyl phosphatidylinositol-linked mammalian netrin that is functionally divergent from classical netrins. J Neurosci 20:6540–6550

    Article  CAS  PubMed  Google Scholar 

  9. Lin JC, Ho WH, Gurney A, Rosenthal A (2003) The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat Neurosci 6:1270–1276

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Burette A, Chung HS, Kwon SK, Woo J, Lee HW et al (2006) NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci 9:1294–1301

    Article  CAS  PubMed  Google Scholar 

  11. Aoki-Suzuki M, Yamada K, Meerabux J, Iwayama-Shigeno Y, Ohba H, Iwamoto K et al (2005) A family-based association study and gene expression analyses of netrin-G1 and -G2 genes in schizophrenia. Biol Psychiatry 57:382–393

    Article  CAS  PubMed  Google Scholar 

  12. Medina-Ceja L, Pardo-Pena K, Ventura-Mejia C (2014) Evaluation of behavioral parameters and mortality in a model of temporal lobe epilepsy induced by intracerebroventricular pilocarpine administration. Neuroreport. https://doi.org/10.1097/WNR.0000000000000207

    Article  PubMed  Google Scholar 

  13. Woo J, Kwon SK, Kim E (2009) The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci 42:1–10

    Article  CAS  PubMed  Google Scholar 

  14. Ohtsuki T, Horiuchi Y, Koga M, Ishiguro H, Inada T, Iwata N et al (2008) Association of polymorphisms in the haplotype block spanning the alternatively spliced exons of the NTNG1 gene at 1p13.3 with schizophrenia in Japanese populations. Neurosci Lett 435:194–197

    Article  CAS  PubMed  Google Scholar 

  15. Eastwood SL, Harrison PJ (2008) Decreased mRNA expression of netrin-G1 and netrin-G2 in the temporal lobe in schizophrenia and bipolar disorder. Neuropsychopharmacol 33:933–945

    Article  CAS  Google Scholar 

  16. Zakharyan R, Boyajyan A, Arakelyan A, Gevorgyan A, Mrazek F, Petrek M (2011) Functional variants of the genes involved in neurodevelopment and susceptibility to schizophrenia in an Armenian population. Hum Immunol 72:746–748

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Yang H, Bi Y, Zhang Y, Zhen C, Xie S et al (2011) Positive association between NTNG1 and schizophrenia in Chinese Han population. J Genet 90:499–502

    Article  PubMed  Google Scholar 

  18. Stepanyan A, Zakharyan R, Boyajyan A (2013) The netrin G1 gene rs628117 polymorphism is associated with ischemic stroke. Neurosci Lett 549:74–77

    Article  CAS  PubMed  Google Scholar 

  19. Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev 96:177–252

    Article  CAS  PubMed  Google Scholar 

  20. Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K et al (2002) Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101:23–32

    Article  CAS  PubMed  Google Scholar 

  21. Wickenden AD (2002) Potassium channels as anti-epileptic drug targets. Neuropharmacology 43:1055–1060

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Guo R, Wu J, Peng Y, Xie D, Zheng W et al (2013) The antiepileptic effect of the glycolytic inhibitor 2-deoxy-D-glucose is mediated by upregulation of K(ATP) channel subunits Kir6.1 and Kir6.2. Neurochem Res 38:677–685

    Article  CAS  PubMed  Google Scholar 

  23. McIntyre DC, Poulter MO, Gilby K (2002) Kindling: some old and some new. Epilepsy Res 50:79–92

    Article  CAS  PubMed  Google Scholar 

  24. Raedt R, Van Dycke A, Van Melkebeke D, De Smedt T, Claeys P, Wyckhuys T et al (2009) Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurol Scand 119:293–303

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  26. Rutecki PA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol 54:1363–1374

    Article  CAS  PubMed  Google Scholar 

  27. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59:259–276

    Article  CAS  PubMed  Google Scholar 

  28. Traynelis SF, Dingledine R, McNamara JO, Butler L, Rigsbee L (1989) Effect of kindling on potassium-induced electrographic seizures in vitro. Neurosci Lett 105:326–332

    Article  CAS  PubMed  Google Scholar 

  29. Tancredi V, Hwa GG, Zona C, Brancati A, Avoli M (1990) Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features. Brain Res 511:280–290

    Article  CAS  PubMed  Google Scholar 

  30. Sombati S, Delorenzo RJ (1995) Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J Neurophysiol 73:1706–1711

    Article  CAS  PubMed  Google Scholar 

  31. Clark S, Wilson WA (1999) Mechanisms of epileptogenesis. Adv Neurol 79:607–630

    CAS  PubMed  Google Scholar 

  32. Gasior M, Yankura J, Hartman AL, French A, Rogawski MA (2010) Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose. Epilepsia 51:1385–1394

    Article  CAS  PubMed  Google Scholar 

  33. Matsukawa H, Akiyoshi-Nishimura S, Zhang Q, Lujan R, Yamaguchi K, Goto H et al (2014) Netrin-G/NGL complexes encode functional synaptic diversification. J Neurosci 34:15779–15792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang K, Shui Q, Xia Z, Yu Z (2004) Changes in the gene and protein expression of K(ATP) channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling. Brain Res Mol Brain Res 128:83–89

    Article  CAS  PubMed  Google Scholar 

  35. Jiang KW, Gao F, Shui QX, Yu ZS, Xia ZZ (2004) Effect of diazoxide on regulation of vesicular and plasma membrane GABA transporter genes and proteins in hippocampus of rats subjected to picrotoxin-induced kindling. Neurosci Res 50:319–329

    Article  CAS  PubMed  Google Scholar 

  36. Gimenez-Cassina A, Martinez-Francois JR, Fisher JK, Szlyk B, Polak K, Wiwczar J et al (2012) BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 74:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He XP, Pan E, Sciarretta C, Minichiello L, McNamara JO (2010) Disruption of TrkB-mediated phospholipase Cgamma signaling inhibits limbic epileptogenesis. J Neurosci 30:6188–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aziz Q, Thomas AM, Khambra T, Tinker A (2012) Regulation of the ATP-sensitive potassium channel subunit, Kir6.2, by a Ca2+-dependent protein kinase C. J Biol Chem 287:6196–6207

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, Cui N, Shi W, Jiang C (2008) A short motif in Kir6.1 consisting of four phosphorylation repeats underlies the vascular KATP channel inhibition by protein kinase C. J Biol Chem 283:2488–2494

    Article  CAS  PubMed  Google Scholar 

  40. Park WS, Ko EA, Han J, Kim N, Earm YE (2005) Endothelin-1 acts via protein kinase C to block KATP channels in rabbit coronary and pulmonary arterial smooth muscle cells. J Cardiovasc Pharmacol 45:99–108

    Article  CAS  PubMed  Google Scholar 

  41. Wierda KD, Toonen RF, de Wit H, Brussaard AB, Verhage M (2007) Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54:275–290

    Article  CAS  PubMed  Google Scholar 

  42. Forte N, Medrihan L, Cappetti B, Baldelli P, Benfenati F. 2-Deoxy-d-glucose enhances tonic inhibition through the neurosteroid-mediated activation of extrasynaptic GABAA receptors. Epilepsia 2016

  43. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM et al (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (81501128) and National Natural Science Foundation of China (81671296). The Jiyizhupao of Third Xiangya Hospital (JY201520). Thanks to the Experimental Animal Center of the Third Xiangya Hospital of Central South University for affording animals.

Author information

Authors and Affiliations

Authors

Contributions

Yuming Long and Kai Zhuang were both the first author to this article. Heng Yang and Zhi Song were both the corresponding author to this article. Yuming Long and Kai Zhuang conducted all the experiments and drafed the main manuscript text. Zhonghai Ji, Yaru Han, Yanqing Fei and Wen Zheng made statistical analysis and prepared all the figures in this article. Heng Yang and Zhi Song designed the whole experiment procedure and supervised the research.

Corresponding authors

Correspondence to Zhi Song or Heng Yang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Zhuang, K., Ji, Z. et al. 2-Deoxy-d-Glucose Exhibits Anti-seizure Effects by Mediating the Netrin-G1-KATP Signaling Pathway in Epilepsy. Neurochem Res 44, 994–1004 (2019). https://doi.org/10.1007/s11064-019-02734-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02734-3

Keywords

Navigation