Skip to main content
Log in

Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

It is well known today that the melting temperature and the catalytic activation energy of nanoparticles are size-dependent. These properties are here analyzed in a size range between 4 and 100 nm, with a special attention to sizes below 20 nm. Nevertheless, their unique properties are determined not only by their size but also by their shape defined by the relative area of different surface facets. In this paper, the influence of crystal structure and shape of the nanoparticles on the melting and catalytic properties are theoretically investigated. The theory is developed for cubic crystal structures i.e., simple cubic, body centered cubic, and face centered cubic. The following shapes are then considered: tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron. The predictions were compared with available experimental data and molecular dynamics simulation results coming from the literature and relatively good agreement was obtained for gold, silver, nickel, and platinum nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abudukelimu G (2009) Thermodynamical approach of phase diagrams of nanosystems: size and shape effects. PhD Thesis in Physics, University of Mons-Hainaut

  • Andrievski RA (2009) Size-dependent effects in properties of nanostructured materials. Rev Adv Mater Sci 21:107–133

    CAS  Google Scholar 

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  • Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856

    Article  CAS  Google Scholar 

  • Barnard AS (2010) Modelling of nanoparticles: approaches to morphology and evolution. Rep Prog Phys 73:086502

    Article  Google Scholar 

  • Barnard AS (2011) Useful equations for modeling the relative stability of common nanoparticle morphologies. Comput Phys Commun 182:11–13

    Article  CAS  Google Scholar 

  • Barnard AS, Chen Y (2011) Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. J Mater Chem 21:12239–12245

    Article  CAS  Google Scholar 

  • Barnard AS, Lin XM, Curtiss LA (2005) Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature. J Phys Chem B 109:24465–24472

    Article  CAS  Google Scholar 

  • Barnard AS, Young NP, Kirkland AI, Van Huis MA, Xu H (2009) Nanogold: a quantitative phase map. ACS Nano 3:1431–1436

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Dash JG (1999) History of the search for continuous melting. Rev Mod Phys 71:1737–1743

    Article  CAS  Google Scholar 

  • Ganguli D (2008) Size effect in melting: a historical overview. Trans Indian Ceram Soc 67:49–62

    CAS  Google Scholar 

  • Gracia-Pinilla MA, Pérez-Tijerina E, Garcia JA, Fernandez-Navarro C, Tlahuice-Flores A, Mejia-Rosales S, Montejano-Carrizales JM, José-Yacaman M (2008) On the structure and properties of silver nanoparticles. J Phys Chem C 112:13492–13498

    Article  CAS  Google Scholar 

  • Guisbiers G (2010) Size-dependent materials properties toward a universal equation. Nanoscale Res Lett 5(7):1132–1136

    Article  CAS  Google Scholar 

  • Guisbiers G (2012) Review on the analytical models describing melting at the nanoscale. J Nanosci Lett 2:8

    Article  Google Scholar 

  • Guisbiers G, Buchaillot L (2009a) Modeling the melting enthalpy of nanomaterials. J Phys Chem C 113(9):3566–3568

    Article  CAS  Google Scholar 

  • Guisbiers G, Buchaillot L (2009b) Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374(2):305–308

    Article  CAS  Google Scholar 

  • Guisbiers G, Abudukelimu G, Hourlier D (2011) Size-dependent catalytic and melting properties of platinum-palladium nanoparticles. Nanoscale Res Lett 6:396

    Article  Google Scholar 

  • Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533

    Article  CAS  Google Scholar 

  • Jiang Q, Lu HM (2008) Size dependent interface energy and its applications. Surf Sci Rep 63:427–464

    Article  CAS  Google Scholar 

  • Kittel C (1995) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  • Koga K, Sugawara K (2003) Population statistics of gold nanoparticle morphologies: direct determination by HREM observations. Surf Sci 529:23–35

    Article  CAS  Google Scholar 

  • Koga K, Ikeshoji T, Sugawara K (2004) Size- and temperature-dependent structural transitions in gold nanoparticles. Phys Rev Lett 92:115507

    Article  Google Scholar 

  • Lu HM, Jiang Q (2004) Size-dependent surface energies of nanocrystals. J Phys Chem B 108:5617–5619

    Article  CAS  Google Scholar 

  • Lu HM, Meng XK (2010) Theoretical model to calculate catalytic activation energies of platinum nanoparticles of different sizes and shapes. J Phys Chem C 114:1534–1538

    Article  CAS  Google Scholar 

  • Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J Phys Chem C 113:7598–7602

    Article  CAS  Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, Berlin

    Book  Google Scholar 

  • Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262

    Article  CAS  Google Scholar 

  • Nanda KK (2009) Size-dependent melting of nanoparticles: 100 years of thermodynamic model. Pramana J Phys 72:617–628

    Article  CAS  Google Scholar 

  • Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703

    Article  CAS  Google Scholar 

  • Pawlow P (1909) Z Phys Chem 65:1

    CAS  Google Scholar 

  • Qi WH, Wang MP (2004) Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys 88:280–284

    Article  CAS  Google Scholar 

  • Qi WH, Wang MP (2005) Size and shape dependent lattice parameters of metallic nanoparticles. J Nanopart Res 7:51–57

    Article  CAS  Google Scholar 

  • Qi WH, Wang MP, Su YC (2002) Size effect on the lattice parameters of nanoparticles. J Mater Sci Lett 21:877–878

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  • Safaei A, Shandiz MA, Sanjabi S, Barber ZH (2008) Modeling the melting temperature of nanoparticles by an analytical approach. J Phys Chem C 112:99–105

    Article  CAS  Google Scholar 

  • Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Sun CQ, Tay BK, Zeng XT, Li S, Chen TP, Zhou J, Bai HL, Jiang EY (2002) Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J Phys Condens Matter 14(34):7781–7795

    Article  CAS  Google Scholar 

  • Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Article  CAS  Google Scholar 

  • Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R 45:1–88

    Article  Google Scholar 

  • Vitos L, Ruban AV, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411(1–2):186–202

    Article  CAS  Google Scholar 

  • Wang ZL (ed) (2000) Characterization of nanophase materials. Wiley-VCH, Weinheim

    Google Scholar 

  • Wang Y, Teitel S, Dellago C (2004) Melting and equilibrium shape of icosahedral gold nanoparticles. Chem Phys Lett 394:257–261

    Article  CAS  Google Scholar 

  • Wautelet M (1998) On the shape dependence of the melting temperature of small particles. Phys Lett A 246(3–4):341–342

    Article  CAS  Google Scholar 

  • Wautelet M (2005) On the melting of polyhedral elemental nanosolids. Eur Phys J Appl Phys 29(1):51–54

    Article  CAS  Google Scholar 

  • Wautelet M, Duvivier D (2007) The characteristic dimensions of the nanoworld. Eur J Phys 28(5):953–959

    Article  CAS  Google Scholar 

  • Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011a) Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. Phys Chem Chem Phys 13:10648–10651

    Article  CAS  Google Scholar 

  • Xiong S, Qi W, Cheng Y, Huang B, Wang M, Li Y (2011b) Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys Chem Chem Phys 13:10652–10660

    Article  CAS  Google Scholar 

  • Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001a) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19(4):1091–1103

    Article  CAS  Google Scholar 

  • Yacaman MJ, Marin-Almazo M, Ascencio JA (2001b) High resolution TEM studies on palladium nanoparticles. J Mol Catal A 173:61–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guisbiers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guisbiers, G., Abudukelimu, G. Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J Nanopart Res 15, 1431 (2013). https://doi.org/10.1007/s11051-013-1431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1431-x

Keywords

Navigation