Skip to main content
Log in

Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

It is necessary to theoretically evaluate the thermodynamic properties of metallic nanoparticles due to the lack of experimental data. Considering the surface effects and crystal structures, a simple theoretical model is developed to study the size dependence of thermodynamic properties of spherical metallic nanoparticles. Based on the model, we have considered Co and Cu nanoparticles for the study of size dependence of cohesive energy, Au and Cu nanoparticles for size dependence of melting temperature, and Cu, Co and Au nanoparticles for size dependence of Debye temperature, respectively. The results show that the size effects on melting temperature, cohesive energy and Debye temperature of the spherical metallic nanoparticles are predominant in the sizes ranging from about 3 nm to 20 nm. The present theoretical predictions are in agreement with available corresponding experimental and computer simulation results for the spherical metallic nanoparticles. The model could be used to determine the thermodynamic properties of other metallic nanoparticles to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Y. Gafner, S. L. Gafner, I. S. Zamulin, L. V. Redel and V. S. Baidyshev, “Analysis of the heat capacity of nanoclusters of fcc metals on the example of Al, Ni, Cu, Pd, and Au,” Phys. Met. Metallogr. 116, 568–575 (2015).

    Article  Google Scholar 

  2. Y. D. Qu, X. J. Li, R. Y. Li, H. H. Yan, X. Ouyang and X. H. Wang, “Preparation and characterization of the TiO2 ultrafine particles by detonation method,” Mater. Res. Bull. 43, 97–103 (2008).

    Article  Google Scholar 

  3. Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, 267–274 (2016).

    Article  Google Scholar 

  4. A. Gohier, C. P. Ewels, T. M. Minea and M. A. Djouadi, “Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size,” Carbon 46, 1331–1338 (2008).

    Article  Google Scholar 

  5. W. Wang, Y. Zhong, K. Lu, L. Lu, D. L. McDowell and T. Zhu, “Size effects and strength fluctuation in nanoscale plasticity,” Acta Mater. 60, 3302–3309 (2012).

    Article  Google Scholar 

  6. M. A. Kibria, M. R. Anisur, M. H. Mahfuz, R. Saidur and I. H. S. C. Metselaar, “A review on thermophysical properties of nanoparticle dispersed phase change materials,” Energ. Convers. Manag. 95, 69–89 (2015).

    Article  Google Scholar 

  7. L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa and S. D. D. L Torre, “Mechanical properties and microstructure of nano-SiC-Al2O3 composites densified by spark plasma sintering,” J. Eur. Ceram. Soc. 19, 609–613 (1999).

    Article  Google Scholar 

  8. R. Z. Valiev, M. Yu. Murashkin, A. V. Ganeev and N. A. Enikeev, “Superstrength of nanostructured metals and alloys produced by severe plastic deformation,” Phys. Met. Metallogr. 113, 1193–1201 (2012)

    Article  Google Scholar 

  9. Y. D. Qu, C. H. Sun, G. L. Sun, X. Q. Kong, and W. J. Zhang, “Preparation, characterization, and kinetic and thermodynamic studies of mixed-phase TiO2 nanoparticles prepared by detonation method,” Res. Phys. 6, 100–106 (2016).

    Google Scholar 

  10. Y. D. Qu, X. J. Li, X. H. Wang and D. H. Liu, “Detonation synthesis of nanosized titanium dioxide powders,” Nanotechnology 18, 205602 (2007).

    Article  Google Scholar 

  11. X. H. Yu and Z. L. Zhan, “The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties,” Nanoscale Res. Lett. 9, 516–522 (2014).

    Article  Google Scholar 

  12. Y. D. Qu, X. Q. Kong, X. J. Li and H. H. Yan, “Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles,” Acta Phys. Sin. 63, 37301 (2014).

    Google Scholar 

  13. H. K. Kim, S. H. Huh, J.W. Park, J. W. Jeong and G. H. Lee, “The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters,” Chem. Phys. Lett. 354, 165–172 (2002).

    Article  Google Scholar 

  14. Y. F. Zhu, W. T. Zheng and Q. Jiang, “Modeling lattice expansion and cohesive energy of nanostructured materials,” Appl. Phys. Lett. 95, 083110 (2009).

    Article  Google Scholar 

  15. R. Kumar and M. Kumar, “Effect of size on cohesive energy, melting temperature and Debye temperature of nanomaterials,” Indian J. Pure Appl. Phys. 50, 329–334 (2012).

    Google Scholar 

  16. W. H. Qi and M. P. Wang, “Size effect on the cohesive energy of nanoparticle,” J. Mater. Sci. Lett. 21, 1743–1745 (2002).

    Article  Google Scholar 

  17. G. Guisbiers, “Size-dependent materials properties toward a universal equation,” Nanoscale Res. Lett. 5, 1132–1136 (2010).

    Article  Google Scholar 

  18. L. H. Allen, G. Ramanath, S. L. Lai, Z. Ma, S. Lee, D. D. J. Allman and K. P. Fuchs, “1000000°C/s thin film electrical heater: In situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing,” Appl. Phys. Lett. 64, 417–419 (1994).

    Article  Google Scholar 

  19. J. A. Reisland, The Physics of Phonons (Wiley, London, 1973).

    Google Scholar 

  20. C. Kittel, Introduction to Solid State Physics (Wiley, London, 2004).

    Google Scholar 

  21. F. Taherkhani, H. Akbarzadeh, H. Abroshan and A. Fortunelli, “Dependence of self-diffusion coefficient, surface energy, on size, temperature, and Debye temperature on size for aluminum nanoclusters,” Fluid Phase Equilib. 335, 26–31(2012).

    Article  Google Scholar 

  22. M. A. Shandiz, “Effective coordination number model for the size dependency of physical properties of nanocrystals,” J. Phys.: Condens. Matter 20, 325237 (2008).

    Google Scholar 

  23. L. H. Liang, C. M. Shen, S. X. Du, W. M. Liu, X. C. Xie and H. J. Gao, “Increase in thermal stability induced by organic coatings on nanoparticles,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 205419 (2004).

    Article  Google Scholar 

  24. C. C. Yang and S. Li, “Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 165413 (2007).

    Article  Google Scholar 

  25. L. H. Liang, and L. Baowen, “Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 153303 (2006).

    Article  Google Scholar 

  26. G. Guisbiers and S. Pereira, “Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures,” Nanotechnology 18, 435710 (2007).

    Article  Google Scholar 

  27. M. Kiguchi, T. Yokoyama, D. Matsummura, H. Kondoh, O. Endo and T. Ohta, “Surface structures and thermal vibrations of Ni and Cu thin films studied by extended X-ray-absorption fine structure,” Phys. Rev. B: Condens. Matter Mater. Phys. 61, 14020–14027 (2000).

    Article  Google Scholar 

  28. C. C. Yang, M. X. Xiao, W. Li and Q. Jiang, “Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals,” Solid State Commun. 139, 148–152 (2006).

    Article  Google Scholar 

  29. P. Buffat and J. P. Borel, “Size effect of the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).

    Article  Google Scholar 

  30. Y. F. Zhu, W. T. Zheng and Q. Jiang, “Modeling lattice expansion and cohesive energy of nanostructured materials,” Appl. Phys. Lett. 95, 083110 (2009).

    Article  Google Scholar 

  31. M. Cottie, The Weird World of Nanoscale (Univ. Technol., Sydney, Australia, 2007).

    Google Scholar 

  32. L. Wang, Y. Zhang, X. Bian and Y. Chen, “Melting of Cu nanoclusters by molecular dynamics simulation,” Phys. Lett. A 310, 197–202 (2003).

    Article  Google Scholar 

  33. F. Delogu, “Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 205418 (2005).

    Article  Google Scholar 

  34. K. K. Nanda, S. N. Sahu and S. N. Behera, “Liquiddrop model for the size-dependent melting of lowdimensional systems,” Phys. Rev. A 66, 013208 (2002).

    Article  Google Scholar 

  35. C. C. Yang and S. Li, “Size-, dimensionality-, and composition-dependent Debye temperature of monometallic and bimetallic nanocrystals in the deep nanometer scale,” Phys. Status Solidi B 248, 1375–1378(2011).

    Article  Google Scholar 

  36. H. Yildirim, A. Kara and T. S. Rahman, “Structural, vibrational and thermodynamic properties of Ag n Cu(34–n) nanoparticles” J. Phys.: Condens. Matter, 21, 084220 (2009).

    Google Scholar 

  37. M. Hou, M. E. Azzaoui and H. Pattyn, J. Verheyden, G. Koops and G. Zhang, “Growth and lattice dynamics of Co nanoparticles embedded in Ag: A combined molecular-dynamics simulation and Mössbauer study,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 5117–5128 (2000).

    Article  Google Scholar 

  38. S. Y. Xiong, W. H. Qi, Y. J. Cheng, B. Y. Huang, M. P. Wang and Y. J. Li, “Universal relation for size dependent thermodynamic properties of metallic nanoparticles,” Phys. Chem. Chem. Phys., 13, 10652–10660 (2011).

    Article  Google Scholar 

  39. A. Balerna, E. Bernieri, P. Picozzi, A. Reale, S. Santucci, E. Burattini and S. Mobilio, “Extended X-rayabsorption fine-structure and near-edge-structure studies on evaporated small clusters of Au,” Phys. Rev. B: Condens. Matter 31, 5058–5065 (1985).

    Article  Google Scholar 

  40. K. Sadaiyandi, “Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al,” Mater. Chem. Phys., 115, 703–706 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Qu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y.D., Liang, X.L., Kong, X.Q. et al. Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles. Phys. Metals Metallogr. 118, 528–534 (2017). https://doi.org/10.1134/S0031918X17060102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17060102

Keywords

Navigation