Skip to main content
Log in

Size- and shape-dependent melting enthalpy and entropy of nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A theoretical model free of any adjustable parameter was derived based on the relation between Gibbs energy change and size to describe the size- and shape-dependent behavior of the melting enthalpy and entropy of nanoparticles. For the melting enthalpy and entropy of vanadium (V), silver (Ag), and copper (Cu) nanoparticles, the results of pure theoretical calculation are in good agreement with available molecular dynamic results. The effect of size on the melting enthalpy and entropy of nanoparticles is greater compared to that of shape effect. The melting enthalpy and entropy decrease with particle size decreasing and the smaller the particle size, the greater the size and shape effects. Furthermore, at the same equivalent diameter, the more the shape of nanoparticles deviates from that of the sphere, the smaller the melting enthalpy and entropy. The thermodynamic relations derived herein can quantitatively describe the influence regularities of size and shape on the melting thermodynamic properties of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483

    Article  Google Scholar 

  2. Guenther G, Guillon O (2014) Models of size-dependent nanoparticle melting tested on gold. J Mater Sci 49:7915–7932. doi:10.1007/s10853-014-8544-1

    Article  Google Scholar 

  3. Shandiz MA, Safaei A, Sanjabi S, Barber ZH (2007) Modeling size dependence of melting temperature of metallic nanoparticles. J Phys Chem Solids 68:1396–1399

    Article  Google Scholar 

  4. Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J Phys Chem C 113:7598–7602

    Article  Google Scholar 

  5. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. doi:10.1007/s10853-012-6772-9

    Article  Google Scholar 

  6. Zhu J, Fu Q, Xue Y, Cui Z (2016) Comparison of different models of melting transformation of nanoparticles. J Mater Sci 51:4462–4469. doi:10.1007/s10853-016-9758-1

    Article  Google Scholar 

  7. Lee J, Sim KJ (2013) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. Calphad 44:129–132

    Article  Google Scholar 

  8. Manai G, Delogu F (2007) Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study. J Mater Sci 42:6672–6683. doi:10.1007/s10853-007-1522-0

    Article  Google Scholar 

  9. Li X (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25:185702/1–185702/7

    Google Scholar 

  10. Johnston JC, Molinero V (2012) Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. J Am Chem Soc 134:6650–6659

    Article  Google Scholar 

  11. Pan D, Liu LM, Slater B, Michaelides A, Wang E (2011) Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals. ACS Nano 5:4562–4569

    Article  Google Scholar 

  12. Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527

    Article  Google Scholar 

  13. Wang B, Wang G, Chen X, Zhao J (2003) Melting behavior of ultrathin titanium nanowires. Phys Rev B 67:193403/1–193403/4

    Google Scholar 

  14. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  Google Scholar 

  15. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99–102

    Article  Google Scholar 

  16. Lai SL, Carlsson JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett 72:1098–1100

    Article  Google Scholar 

  17. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317

    Article  Google Scholar 

  18. Sun PL, Wu SP, Chin TS (2015) Melting point depression of tin nanoparticles embedded in a stable alpha-alumina matrix fabricated by ball milling. Mater Lett 144:142–145

    Article  Google Scholar 

  19. Jiang Q, Shi FG (1998) Entropy for solid–liquid transition in nanocrystals. Mater Lett 37:79–82

    Article  Google Scholar 

  20. Mott NF (1934) The resistance of liquid metals. Proc Royal Soc Lond Ser A 146:465–472

    Article  Google Scholar 

  21. Shi FG (1994) Size dependent thermal vibrations and melting in nanocrystals. J Mater Res 9:1307–1313

    Article  Google Scholar 

  22. Jiang Q, Aya N, Shi FG (1997) Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl Phys A 64:627–629

    Article  Google Scholar 

  23. Kumar R, Sharma G, Kumar M (2013) Effect of size and shape on the vibrational and thermodynamic properties of nanomaterials. J Thermodyn 2013(5):91–99

    Google Scholar 

  24. Safaei A, Shandiz MA (2009) Size-dependent thermal stability and the smallest nanocrystal. Phys E 41:359–364

    Article  Google Scholar 

  25. Xie D, Wang MP, Qi WH, Cao LF (2006) Thermal stability of indium nanocrystals: a theoretical study. Mater Chem Phys 96:418–421

    Article  Google Scholar 

  26. Safaei A, Shandiz MA (2010) Melting entropy of nanocrystals: an approach from statistical physics. Phys Chem Chem Phys 12:15372–15381

    Article  Google Scholar 

  27. Omid H, Hamid DH, Hosseini HRM (2011) Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number. J Phys Chem C 115:17310–17313

    Article  Google Scholar 

  28. Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson JM, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303:231–246

    Article  Google Scholar 

  29. Guisbiers G, Buchaillot L (2009) Modeling the melting enthalpy of nanomaterials. J Phys Chem C 113:3566–3568

    Article  Google Scholar 

  30. Xie D, Qi W, Wang M (2004) Size and shape dependent melting-thermodynamic properties of metallic nanoparticles. Acta Metall Sin 40:1041–1044

    Google Scholar 

  31. Xue YQ, Gao BJ, Gao JF (1997) The theory of thermodynamics for chemical reactions in dispersed heterogeneous systems. J Colloid Interface Sci 191:81–85

    Article  Google Scholar 

  32. Peters KF, Chung YW, Cohen JB (1997) Surface melting on small particles. Appl Phys Lett 71:2391–2393

    Article  Google Scholar 

  33. Mitome M (1999) In-situ observation of melting of fine lead particles by high-resolution electron microscopy. Surf Sci 442:L953–L958

    Article  Google Scholar 

  34. Sheng HW, Lu K, Ma E (1998) Melting and freezing behavior of embedded nanoparticles in ball-milled Al–10wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater 46:5195–5205

    Article  Google Scholar 

  35. Beaglehole D (1991) Surface melting of small particles, and the effects of surface impurities. J Cryst Growth 112:663–669

    Article  Google Scholar 

  36. Son JH, Kim SD, Vij JK, Song JK (2014) Effect of molecular-scale surface morphology on the surface melting of liquid crystals on self-assembled monolayers. Appl Phys Lett 105:251601/1–251601/4

    Google Scholar 

  37. Gülseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51:7377–7380

    Article  Google Scholar 

  38. Dash JG (1989) Surface melting. Contemp Phys 30:89–100

    Article  Google Scholar 

  39. Li B, Wang F, Zhou D, Peng Y, Ni R, Han Y (2016) Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 531:485–488

    Article  Google Scholar 

  40. Alarifi HA, Atis M, Ozdogan C, Hu A, Yavuz M, Zhou Y (2013) Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J Phys Chem C 117:12289–12298

    Article  Google Scholar 

  41. Yaws CL (1999) Chemical Properties Handbook, 1st edn. McGraw-Hill, New York, pp 212–235

    Google Scholar 

  42. Perry RH, Green DW (2008) Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill, New York, pp 2–136

    Google Scholar 

  43. Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241

    Google Scholar 

  44. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 154–158

    Google Scholar 

  45. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 78–108

    Google Scholar 

  46. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 207–211

    Google Scholar 

  47. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 234–238

    Google Scholar 

  48. Perry RH, Green D (1984) Perry’s chemical engineers’ handbook, 6th. McGraw-Hill, New York, pp 3–128 Chinese Version

    Google Scholar 

  49. Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem C 115:22796–22803

    Article  Google Scholar 

  50. Tanaka T, Hara S (2001) Thermodynamic evaluation of binary phase diagrams of small particle systems. Z Metallkd 92:467–472

    Google Scholar 

  51. Jiang Q, Yang CC, Li JC (2002) Melting enthalpy depression of nanocrystals. Mater Lett 56:1019–1021

    Article  Google Scholar 

  52. Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62:10548–10557

    Article  Google Scholar 

  53. Luo W, Hu W, Xiao S (2008) Size effect on the thermodynamic properties of silver nanoparticles. J Phys Chem C 112:2359–2369

    Article  Google Scholar 

  54. Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72:205418/1–205418/9

    Google Scholar 

  55. Shandiz MA, Safaei A (2008) Melting entropy and enthalpy of metallic nanoparticles. Mater Lett 62:3954–3956

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support from the National Natural Science Foundation of China (Nos. 21373147 and 21573157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Xue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Zhu, J., Xue, Y. et al. Size- and shape-dependent melting enthalpy and entropy of nanoparticles. J Mater Sci 52, 1911–1918 (2017). https://doi.org/10.1007/s10853-016-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0480-9

Keywords

Navigation