Skip to main content
Log in

Impact and structure of literature on nanoparticle generation by laser ablation in liquids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The number of publications on laser ablation and nanoparticle generation in liquids increased by the factor of 15 in the last decade, with comparable high impact of the most cited articles in this field. A nearly unlimited variety of nanoparticle material, liquid matrix, and conjugative agent can be combined to a huge variety of colloids within a few minutes of laser processing. However, this diversification makes it hard to identify main research directions without a comprehensive literature overview. This investigation evaluates the impact and structure of the literature in this field tagging most prolific subjects and articles. Using an optimized search algorithm, the data sets derived from Science Citation Index (1998–2008) allow for statements on publication subject clusters, impact of articles and journals, as well as mapping global spots of activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelsayed V, Glaspell G, Nguyen M, Howe JM, El-Shall MS (2008) Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M = Fe, Co and Ni). Faraday Discuss 138:163–180

    Article  PubMed  CAS  Google Scholar 

  • Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798

    Article  PubMed  CAS  Google Scholar 

  • Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55

    Article  ADS  CAS  Google Scholar 

  • Barcikowski S, Hustedt M, Chichkov B (2008) Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers. Polimery 53:657–662

    CAS  Google Scholar 

  • Besner S, Kabashin AV, Winnik FM, Meunier M (2009) Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J Phys Chem C 113:9526–9531

    Article  CAS  Google Scholar 

  • Compagnini G, Scalisi AA, Puglisi O (2002) Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film. Phys Chem Chem Phys 4:2787–2791

    Article  CAS  Google Scholar 

  • Compagnini G, Scalisi AA, Puglisi O (2003) Production of gold nanoparticles by laser ablation in liquid alkanes. J Appl Phys 94:7874–7877

    Article  ADS  CAS  Google Scholar 

  • Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  PubMed  CAS  Google Scholar 

  • Faraday M (1857) The Bakerian lecture—experimental relations of gold (and other metals) to light. Phil Trans Royal Soc Lond 147:145–181

    Article  Google Scholar 

  • Fojtik A, Henglein A (1993) Laser ablation of films and suspended particles in a solvent—formation of cluster and colloid solutions. Ber Bunsenges Phys Chem Chem Phys 97:252–254

    CAS  Google Scholar 

  • Hahn A, Barcikowski S (2009) Production of bioactive nanomaterial using laser generated nanoparticles. J Laser Micro/Nanoeng 4:51–54

    CAS  Google Scholar 

  • Hahn A, Barcikowski S, Chichkov B (2008) Influences on nanoparticle production during pulsed laser ablation. J Laser Micro/Nanoeng 3:73–77

    CAS  Google Scholar 

  • Heinze T, Shapira P, Senker J, Kuhlmann S (2007) Identifying creative research accomplishments: methodology and results for nanotechnology and human genetics. Scientometrics 70:125–152

    Article  CAS  Google Scholar 

  • Hodak JH, Henglein A, Giersig M (2000) Laser-induced inter-diffusion in AuAg core–shell nanoparticles. J Phys Chem B 104:11708–11718

    Article  CAS  Google Scholar 

  • Kabashin AV, Meunier M, Kingston C (2003) Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclo-dextrins. J Phys Chem B 107:4527–4531

    Article  CAS  Google Scholar 

  • Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters—photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128

    Article  CAS  Google Scholar 

  • Kimura Y, Takata H, Terazima M, Ogawa T, Isoda S (2007) Preparation of gold nanoparticles by the laser ablation in room-temperature ionic liquids. Chem Lett 36:1130–1131

    Article  CAS  Google Scholar 

  • Kostoff RN, Stump JA, Johnson D, Murday JS, Lau CGY (2006) The structure and infrastructure of the global nanotechnology literature. J Nanopart Res 8:301–321

    Article  CAS  Google Scholar 

  • Kostoff RN, Koytcheff RG, Lau CGY (2007) Global nanotechnology research literature overview. Technol Forecast Soc Change 74:1733–1747

    Article  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  • Mafune F, Kohno JY, Takeda Y et al (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561

    Article  CAS  Google Scholar 

  • Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  PubMed  ADS  CAS  Google Scholar 

  • Pavesi L, Dal Negro L, Mazzoleni C et al (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    Article  PubMed  ADS  CAS  Google Scholar 

  • Petersen S, Barcikowski S (2009) In situ bioconjugation—single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172

    Article  CAS  Google Scholar 

  • Porter AL, Youtie J, Shapira P, Schoeneck DJ (2008) Refining search terms for nanotechnology. J Nanopart Res 10:715–728

    Article  CAS  Google Scholar 

  • Sattari R, Sajti CL, Khan S, Barcikowski S (2008) Scale-up of nanoparticle production during laser ablation of ceramics in liquid media. In: 27th International conference on applied lasers electro-optics, ICALEO, 20–23 Oct 2008, pp 49–54

  • Simakin AV, Voronov VV, Shafeev GA (2001) Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem Phys Lett 348:182–186

    Article  ADS  CAS  Google Scholar 

  • Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004a) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004b) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108:16864–16869

    Article  CAS  Google Scholar 

  • Tsuji T, Iryo K, Watanabe N (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85

    Article  ADS  CAS  Google Scholar 

  • Usui H, Shimizu Y, Sasaki T et al (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124

    Article  PubMed  CAS  Google Scholar 

  • Voronov VV, Kazakevich PV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quant Electron 34:951–956

    Article  CAS  Google Scholar 

  • Wang JB, Yang GW, Zhang CY et al (2003) Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction. Chem Phys Lett 367:10–14

    Article  ADS  CAS  Google Scholar 

  • Zeng HB, Cai WP, Li Y et al (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B 109:18260–18266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Deutsche Forschungsgemeinschaft for funding literature research within the projects BA 3580/2-1 and CH-179/9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Barcikowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcikowski, S., Devesa, F. & Moldenhauer, K. Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J Nanopart Res 11, 1883–1893 (2009). https://doi.org/10.1007/s11051-009-9765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9765-0

Keywords

Navigation