Skip to main content
Log in

Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Motivated by concerns about the organizational and institutional conditions that foster research creativity in science, we focus on how creative research can be defined, operationalized, and empirically identified. A functional typology of research creativity is proposed encompassing theoretical, methodological and empirical developments in science. We then apply this typology through a process of creative research event identification in the fields of nanotechnology and human genetics in Europe and the United States, combining nominations made by several hundred experts with data on prize winners. Characteristics of creative research in the two respective fields are analyzed, and there is a discussion of broader insights offered by our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksnes, D. W. (2006), Citation rates and perceptions of scientific contribution, Journal of the American Society for Information Science and Technology, 57,2: 169–185.

    Article  Google Scholar 

  • Amabile, T. M. (1996), Creativity in Context: Update to the Social Psychology of Creativity, Boulder, CO: Westview Press.

    Google Scholar 

  • Ashby, W. R. (1956), An Introduction to Cybernetics. London: Chapman and Hall. Internet (1999) http://pcp.vub.ac.be/books/IntroCyb.pdf

    MATH  Google Scholar 

  • Berka, W., Brix, E., Smekal, C. (2003), Woher kommt das Neue? Kreativität in Wissenschaft und Kunst, Wien: Böhlau.

    Google Scholar 

  • Binnig, G., Rohrer, H. (1982, August 10), Scanning Tunneling Microscope. Patent 4,343,993. United States Patent and Trade Mark Office.

  • Blau, J. (2005), Europe seeks greater creativity in basic research, Research Technology Management, May–June: 2–3.

  • Darwin, C. (1859), On the Origin of Species by Means of Natural Selection. London, John Murray (First Edition).

    Google Scholar 

  • Dunbar, K. (1995), How scientists really reason: Scientific reasoning in real-world laboratories. In: Sternberg, R. J., Davidson, J. (Eds), Mechanisms of Insight, Cambridge, MA: MIT Press, pp. 363–395.

    Google Scholar 

  • Dunbar, K. (1997), How scientists think: Online creativity and conceptual change in science, In: Ward, T. B., Smith, S. M., Vaid, S. (Eds), Conceptual Structures and Processes: Emergence, Discovery and Change, APA Press: Washington DC, pp. 461–493.

    Google Scholar 

  • Einstein, A. (1905), Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies), Annalen der Physik, 17: 891.

    Google Scholar 

  • Fuchs, S. (1999), Niklas Luhmann, Sociological Theory, 17(1): 117–119.

    Article  Google Scholar 

  • Ferry, G., Sulston, J. (2002), The Common Thread: A Story of Science, Politics, Ethics and the Human Genome, Joseph Henry Press Books: Washington DC.

    Google Scholar 

  • Heinze, T. (2004), Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States, Nanotechnology Law & Business, 1(4): 427–447.

    Google Scholar 

  • Heinze, T. (2006), Die Kopplung von Wissenschaft und Wirtschaft. Das Beispiel der Nanotechnologie, Frankfurt/New York: Campus.

    Google Scholar 

  • Hemlin, S., Allwood, C. M., Martin, B. R. (2004), Creative Knowledge Environments: The Influences on Creativity in Research and Innovation, Cheltenham, UK: Edward Elgar.

    Google Scholar 

  • Hessenbruch, A. (2004): Nanotechnology and the negotiation of novelty, In: Baird, D., Nordmann, A., Schummer, J. (Eds), Discovering the Nanoscale, Amsterdam: IOS Press, pp. 135–144.

    Google Scholar 

  • Hollingsworth, R. (2002), Research Organizations and Major Discoveries in Twenthieth-century Science: A Case of Excellence in Biomedical Research, Berlin: WZB Discussion Paper P02-003.

  • Hollingsworth, R. (2004), Institutionalizing excellence in biomedical research: The case of Rockefeller University. In: Stapleton, D. H. (Ed.), Creating a Tradition of Biomedical Research. Contributions to the History of the Rockefeller University, New York: Rockefeller University Press, pp. 17–63.

    Google Scholar 

  • Hutchinson Dictionary of Scientific Biography (1999), Helicon Publishing Ltd. Published under license in AccessScience@McGraw-Hill. http://www.accesscience.com (accessed March 27, 2006).

  • Kaku, M., (2004), Einstein’s Cosmos: How Albert Einstein’s Vision Transformed Our Understanding of Space and Time, London: Weidenfeld & Nicolson.

    Google Scholar 

  • Kuhn, T. S. (1962), The Structure of Scientific Revolutions, Chicago: University of Chicago Press.

    Google Scholar 

  • Laredo, P. (1999), The Development of a Reproducible Method for the Characterisation of a Large Set of Research Collectives for EC EUPSR Project TSER SOE1-CT96-1036, Paris: Armines/CSI.

    Google Scholar 

  • Lovie, A.D., Lovie, P. (1993), Charles Spearman, Cyril Burt, and the origins of factor analysis, Journal of the History of the Behavioral Sciences, 29: 308–321.

    Google Scholar 

  • Luhmann, N. (1984), Soziale Systeme: Grundriß einer allgemeinen Theorie. Frankfurt am Main: Suhrkamp. (Social Systems, Stanford University Press, 1995).

    Google Scholar 

  • Luhmann, N. (1990), Die Wissenschaft der Gesellschaft, Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Maddox, B. (2002), Rosalind Franklin: The Dark Lady of DNA, New York, HarperCollins.

    Google Scholar 

  • Maritain, J. (1977), Creative Intuition in Art and Poetry, Princeton: Princeton University Press.

    Google Scholar 

  • Nagel, S. S. (2002), Policy Creativity: New Perspectives, Hauppauge: Nova Science Publishers.

    Google Scholar 

  • National Science Board (2004), Science and Engineering Indicators 2004, National Science Foundation, Division of Science Resources Statistics, Arlington, VA (NSB 04-01).

    Google Scholar 

  • Noyons, E. C. M., Buter, R., Raan, A. F. J. V., Schmoch, U., Heinze, T., Hinze, S., Rangnow, R. (2003), Mapping Excellence in Science and Technology across Europe. Nanoscience and Nanotechnology, Report to the European Commission: University of Leiden.

    Google Scholar 

  • Ochse, R. (1990), Before the Gates of Excellence. The Determination of Creative Genius, Cambridge: Cambridge University Press.

    Google Scholar 

  • Otten, H. R. (2001), Wie kreativ ist der homo politicus? Überlegungen zu Max Weber, In: Bluhm, H., Gebhardt, J. (Eds), Konzepte politischen Handelns. Kreativität — Innovation — Praxen, Baden-Baden: Nomos, pp. 189–214.

    Google Scholar 

  • Polanyi, M. (1966), The Tacit Dimension, London: Routledge & Kegan Paul Ltd.

    Google Scholar 

  • Polanyi, M. (1969), Knowing and Being. With an introduction by Marjorie Grene, Chicago: Chicago University Press.

    Google Scholar 

  • Segal, S. M., Busse, T. V., Mansfield, R. S. (1980), The relationship of scientific creativity in the biological sciences to predoctoral accomplishments and experiences, American Educational Research Journal, 17(4): 491–502.

    Article  Google Scholar 

  • Shapira, P., Kuhlmann, S. (Eds) (2003), Learning from Science and Technology Policy Evaluation, Cheltenham, UK.

  • Simonton, D. K. (1999), Origins of Genius: Darwinian Perspectives on Creativity, New York: Oxford University Press.

    Google Scholar 

  • Simonton, D. K. (2004), Creativity in Science: Chance, Logic, Genius, and Zeitgeist, Cambridge: Cambridge University Press.

    Google Scholar 

  • Spearman, C. E. (1904a), ’General intelligence’ objectively determined and measured, American Journal of Psychology, 5: 201–293.

    Article  Google Scholar 

  • Spearman, C. E. (1904b), Proof and measurement of association between two things, American Journal of Psychology, 15: 72–101.

    Article  Google Scholar 

  • Spearman, C. E. (1927), The Abilities of Man, Their Nature and Measurement. New York: Macmillan.

    MATH  Google Scholar 

  • Stachel, J. (2002), ’What Song the Syrens Sang’: How Did Einstein Discover Special Relativity? In: Stachel (Ed.), J. Einstein from “B” to “Z”, Boston: Birkhäuser, pp. 157–169.

    Google Scholar 

  • Sternberg, R. J. (2003), Wisdom, Intelligence, and Creativity Synthesized, Cambridge: Cambridge University Press.

    Google Scholar 

  • Stichweh, R. (1994), Wissenschaft, Universität, Professionen. Soziologische Analysen, Frankfurt am Main: Suhrkamp, pp. 15–51.

    Google Scholar 

  • Stumpf, H. (1995), Scientific creativity: A short overview, Educational Psychology Review, 7(3): 225–241.

    Article  MathSciNet  Google Scholar 

  • Sutton, R. I. (2002), Weird ideas that spark innovation. Counterintuitive approaches are helping companies their creative edge, MIT Sloan Management Review, Winter 2002, pp. 83–87.

  • Swedberg, R., George A., Akerlof (1994), In: Swedberg, R. (Ed.), Economics and Sociology. Redefining Their Boundaries: Conversations with Economists and Sociologists, New Jersey: Princeton University Press, pp. 61–77.

    Google Scholar 

  • Von Bertalanffy, L. (1949), The concepts of systems in physics and biology, Bulletin of the British Society for the History of Science, 1: 44–45.

    Google Scholar 

  • Williams, R. H., Zimmerman, D. W., Zumbo, B. D., Ross, D. (2003), Charles Spearman: British behavioral scientist, Human Nature Review, 3: 114–118.

    Google Scholar 

  • Willke, H. (1996), Systemtheorie I: Grundlagen, Stuttgart: Lucius & Lucius.

    Google Scholar 

  • Whitley, R. (2000), The Intellectual and Social Organization of the Sciences, 2nd edition, Oxford: Oxford University Press.

    Google Scholar 

  • Zuckerman, H. (1977), Scientific Elite, New York: Free Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinze, T., Shapira, P., Senker, J. et al. Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics. Scientometrics 70, 125–152 (2007). https://doi.org/10.1007/s11192-007-0108-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-007-0108-6

Keywords

Navigation