Skip to main content
Log in

Energy-consistent simulation of frictional contact in rigid multibody systems using implicit surfaces and penalty method

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We present a conservative formulation for the frictional contact forces developed in the framework of an energy-consistent method. Bilateral constrains, that is, joints and rigid links, are imposed using the augmented Lagrange technique, provided that the constraints are exactly satisfied. We propose a formulation based on a penalty method to deal with the contact problem including damping and friction. The numerical scheme guarantees that the energy is consistently preserved or unconditionally dissipated. The treatment of the contact constraint also constitutes a novel aspect of this investigation. It is based on the description of implicit surfaces given an efficient strategy for detecting and evaluating the contact. The numerical tests exhibit a good energy preservation performance. Moreover, we use the proposed formulation to analyze a mechanism including a revolute joint with frictional clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56(3), 277–295 (2008)

    Article  MATH  Google Scholar 

  2. Yaqubi, S., Dardel, M., Daniali, H.M., Ghasemi, M.H.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, L., Yang, Y.: Modeling a non-ideal rolling ball bearing joint with localized defects in planar multibody systems. Multibody Syst. Dyn. 35(4), 409–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pereira, C., Ambrósio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  5. Erkaya, S., Dŏgan, S., Ulus, Ş.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015)

    Article  Google Scholar 

  6. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553 (2003)

    Article  Google Scholar 

  8. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007)

    Article  Google Scholar 

  9. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, V.I.: Mecánica Clásica. Métodos matemáticos. Paraninfo S.A., Madrid (1983)

    Google Scholar 

  12. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential–algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2(1), 73 (2007)

    Article  Google Scholar 

  13. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems, vol. 14, 2nd revised edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  15. Bayo, E., García de Jalón, J., Avello, A., Cuadrado, J.: An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates. Comput. Methods Appl. Mech. Eng. 92(3), 377–395 (1991)

    Article  MATH  Google Scholar 

  16. Avello, A., Jiménez, J.M., Bayo, E., García de Jalón, J.: A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 107(3), 313–339 (1993)

    Article  MATH  Google Scholar 

  17. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuadrado, J., Dopico, D., Naya, M.A., Gonzales, M.: Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integrators. Multibody Syst. Dyn. 12, 117–132 (2004)

    Article  MATH  Google Scholar 

  19. González, F., Kövecses, J.: Use of penalty formulations in dynamic simulation and analysis of redundantly constrained multibody systems. Multibody Syst. Dyn. 29(1), 57–76 (2013)

    Article  MathSciNet  Google Scholar 

  20. Bayo, E., García de Jalón, J., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  22. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. García Orden, J.C., Ortega, R.A.: A conservative augmented Lagrangian algorithm for the dynamics of constrained mechanical systems. Mech. Based Des. Struct. Mach. 34(4), 449–468 (2006)

    Article  Google Scholar 

  24. Cavalieri, F., Cardona, A.: An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems. Int. J. Numer. Methods Eng. 93(4), 420–442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cavalieri, F., Cardona, A.: Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique. Multibody Syst. Dyn. 35(4), 353–375 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mashayekhi, M.J., Kövecses, J.: A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multibody Syst. Dyn. (2016). doi:10.1007/s11044-016-9510-2

    Google Scholar 

  27. Brenan, K.E., Campbell, S.L., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential–Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  28. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  29. García Orden, J.C., Conde Martín, S.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1), 245–257 (2011)

    MathSciNet  MATH  Google Scholar 

  30. García Orden, J.C., Ortega, R.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics. Computational Methods in Applied Sciences, vol. 23, pp. 153–171. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  31. Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31(1), 19–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  33. Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. 43(5), 757–792 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100(1), 63–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simo, J.C., Gonzalez, O.: Assessment of energy-momentum and symplectic schemes for stiff dynamical systems. In: Proc. ASME Winter Annual Meeting, pp. 1–25. American Society of Mechanical Engineers, New York (1993)

    Google Scholar 

  36. Simo, J.C., Tarnow, N., Doblare, M.: Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer. Methods Eng. 38(9), 1431–1473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6(5), 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gonzalez, O., Simo, J.C.: On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Eng. 134(3–4), 197–222 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential–algebraic formulations and conservative integration. Physica D 132(1–2), 165–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 190(13–14), 1763–1783 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part I: time-stepping schemes for \(N\)-body problems. Int. J. Numer. Methods Eng. 49(5), 599–638 (2000)

    Article  MATH  Google Scholar 

  42. García Orden, J.C., Goicolea, J.M.: Conserving properties in constrained dynamics of flexible multibody systems. Multibody Syst. Dyn. 4(2–3), 225–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Conde Martin, S., Garcia Orden, J.: An energy-consistent integration scheme for flexible multibody systems with dissipation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230(3), 268–280 (2016)

    Google Scholar 

  44. Bauchau, O.A., Bottasso, C.L.: On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems. Comput. Methods Appl. Mech. Eng. 169(1–2), 61–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Borri, M., Bottasso, C.L., Trainelli, L.: Integration of elastic multibody systems by invariant conserving/dissipating algorithms. I. Formulation. Comput. Methods Appl. Mech. Eng. 190(29–30), 3669–3699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bottasso, C.L., Borri, M., Trainelli, L.: Integration of elastic multibody systems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput. Methods Appl. Mech. Eng. 190(29–30), 3701–3733 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Armero, F., Romero, I.: On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Comput. Methods Appl. Mech. Eng. 190(20–21), 2603–2649 (2001)

    Article  MATH  Google Scholar 

  48. Armero, F., Romero, I.: On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput. Methods Appl. Mech. Eng. 190(51–52), 6783–6824 (2001)

    Article  MATH  Google Scholar 

  49. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191(3–5), 467–488 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Betsch, P., Steinmann, P.: Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng. 53(10), 2271–2304 (2002)

    Article  MATH  Google Scholar 

  51. Lens, E.V., Cardona, A., Géradin, M.: Energy preserving time integration for constrained multibody systems. Multibody Syst. Dyn. 11(1), 41–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lens, E., Cardona, A.: An energy preserving/decaying scheme for nonlinearly constrained multibody systems. Multibody Syst. Dyn. 18(3), 435–470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Marques, F., Flores, P., Pimenta Claro, J.C., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  54. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012)

    Article  MathSciNet  Google Scholar 

  55. Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multibody Syst. Dyn. 39(3), 267–290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Armero, F., Petőcz, E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158(3–4), 269–300 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Armero, F., Petőcz, E.: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis. Comput. Methods Appl. Mech. Eng. 179(1–2), 151–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Laursen, T.A., Chawla, V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Chawla, V., Laursen, T.A.: Energy consistent algorithms for frictional contact problems. Int. J. Numer. Methods Eng. 42(5), 799–827 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Hesch, C., Betsch, P.: Transient 3d contact problems—NTS method: mixed methods and conserving integration. Comput. Mech. 48(4), 437–449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Glocker, C.: Energetic consistency conditions for standard impacts. Part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29(1), 77–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Glocker, C.: Energetic consistency conditions for standard impacts. Part II: Poisson-type inequality impact laws. Multibody Syst. Dyn. 32(4), 445–509 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wriggers, P.: Computational Contact Mechanics. Wiley, New York (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the support given by Chilean Council for Scientific and Technological Research (PAI79130042) and the Scientific Research Projects Management Department of the Vice Presidency of Research, Development and Innovation (DICYT-VRID) at Universidad de Santiago de Chile (project “Aporte Basal 061516CSSA”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, R., García Orden, J.C., Cruchaga, M. et al. Energy-consistent simulation of frictional contact in rigid multibody systems using implicit surfaces and penalty method. Multibody Syst Dyn 41, 275–295 (2017). https://doi.org/10.1007/s11044-017-9565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9565-8

Keywords

Navigation