Skip to main content

Advertisement

Log in

Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcriptional regulation of picrosides biosynthesis, the iridoid glycosides of an endangered medicinal herb, Picrorhiza kurroa, is completely unknown. P. kurroa plants obtained from natural habitat accumulate higher picrosides than in-vitro cultured plants, which necessitates identification of transcription factors (TFs) regulating their differential biosynthesis. The current study investigates complete spectrum of different TF classes in P. kurroa transcriptomes and discerns their association with picrosides biosynthesis. Transcriptomes of differential picroside-I content shoots and picroside-II content roots were mined for seven classes of TFs implicated in secondary metabolism regulation in plants. Key TFs were identified through in silico transcript abundance and qPCR analysis was performed to confirm transcript levels of TFs under study in differential content tissues and genotypes. Promoter regions of key picrosides biosynthetic pathway genes were explored to hypothesize which TFs can possibly regulate target genes. A total of 131, 137, 107, 82 and 101 transcripts encoding different TFs families were identified in PKS-25, PKS-15, PKSS, PKR-25 and PKSR transcriptomes, respectively. ERF-18, bHLH-104, NAC-25, 32, 94 and SUF-4 showed elevated expression in roots (up to 37 folds) and shoots (up to 195 folds) of plants obtained from natural habitat, indicating their role as activators of picrosides biosynthesis whereas, elevated expression of WRKY-17, 40, 71 and MYB-4 in low picrosides content conditions suggested their down-regulatory role. In silico analysis of key picrosides biosynthetic pathway gene promoter regions revealed binding domains for ERF-18, NAC-25, WRKY-40 and MYB-4. Identification of candidate TFs contributing towards picrosides biosynthesis is a pre-requisite for designing appropriate metabolic engineering strategies aimed at enhancing picrosides content in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TF:

Transcription factor

P. kurroa :

Picrorhiza kurroa

PKS-25:

P. kurroa in vitro-cultured shoots grown at 25 °C

PKS-15:

P. kurroa in vitro-cultured shoots grown at 15 °C

PKR-25:

P. kurroa in vitro-cultured roots grown at 25 °C

PKSS:

P. kurroa shoots obtained from natural habitat

PKSR:

P. kurroa roots obtained from natural habitat

P-I and II:

Picroside I and II

HMGR:

Hydroxymethyl glutaryl CoA reductase

ISPD:

2-C-methylerythritol 4-phosphate cytidyl transferase

DXPS:

1-Deoxy-d-xylulose 5-phosphate synthase

PMK:

Phosphomevalonate kinase

HFD:

2 Hydroxyisoflavanone dehydratase

DAHPS:

3-Deoxy-d-arabinoheptulosonate 7-phosphate synthase

ISPE:

4-(Cytidine-5′-diphospho)-2-C-methyl-d-erythritol kinase

CM:

Chorismate mutase

GS:

Geraniol synthase

G10H:

Geraniol 10-hydroxylase

EPSPS:

5-Enolpyruvylshikimic acid-3-phosphate synthase

PAL:

Phenylalanine ammonia lyase

SK:

Shikimate kinase

pkdoubleWRKY:

Double WRKY type transcription factor sequenced from P. kurroa

pkWRKY:

WRKY class transcription factor isolated from P. kurroa

CPRF2:

Common plant regulatory factor 2 (CPRF2) transcription factor

NAP:

NAC like activated by APETALA3/PISTILLATA

COL:

Constans like TF

RSEM:

RNA-Seq by Expectation Maximization

FPKM:

Fragments per kilobase of exon per million fragments mapped

NGS:

Next generation sequencing

References

  1. Saraswat B, Visen PK, Patnaik GK, Dhawan BN (1997) Protective effect of picroliv, active constituent of Picrorhiza kurrooa, against oxytetracycline induced hepatic damage. Indian J Exp Biol 35(12):1302–1305

    CAS  PubMed  Google Scholar 

  2. Bhandari P, Kumar N, Singh B, Gupta AP, Kaul VK, Ahuja PS (2009) Stability-indicating LC–PDA method for determination of picrosides in hepatoprotective Indian herbal preparations of Picrorhiza kurroa. Chromatographia 69(3):221–227

    Article  CAS  Google Scholar 

  3. Ansari RA, Tripathi SC, Patnaik GK, Dhawan BN (1991) Antihepatotoxic properties of picroliv: an active fraction from rhizomes of Picrorhiza kurrooa. J Ethnopharmacol 34(1):61–68

    Article  CAS  PubMed  Google Scholar 

  4. Nayar MP, Sastri ARK (1990) Red Data Plants of India. CSIR Publication, New Delhi, p 271

    Google Scholar 

  5. Sood H, Chauhan RS (2010) Biosynthesis and accumulation of a medicinal compound, Picroside-I, in cultures of Picrorhiza kurroa Royle ex Benth. Plant Cell Tiss Org Cult 100(1):113–117

    Article  CAS  Google Scholar 

  6. Patial V, Devi K, Sharma M, Bhattacharya A, Ahuja PS (2012) Propagation of Picrorhiza kurroa Royle ex Benth: an important medicinal plant of Western Himalaya. J Med Plant Res 6(34):4848–4860

    Article  CAS  Google Scholar 

  7. Kumar V, Sood H, Chauhan RS (2013) A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochem Analysis 24:598–602

    Article  CAS  Google Scholar 

  8. Kumar V, Chauhan RS, Tandon C (2016) Biosynthesis and therapeutic implications of iridoid glycosides from Picrorhiza genus: the road ahead. J Plant Biochem Biotechnol. doi:10.1007/s13562-016-0364-8 (in press)

    Google Scholar 

  9. Singh H, Gahlan P, Kumar S (2013) Cloning and expression analysis of ten genes associated with picrosides biosynthesis in Picrorhiza kurroa. Gene 515(2):320–328

    Article  CAS  PubMed  Google Scholar 

  10. Pandit S, Shitiz K, Sood H, Chauhan RS (2013) Differential biosynthesis and accumulation of picrosides in an endangered medicinal herb Picrorhiza kurroa. J Plant Biochem Biotechnol 22(3):335–342

    Article  CAS  Google Scholar 

  11. Kumar V, Shitiz K, Chauhan RS, Sood H, Tandon C (2016) Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation. J Plant Biochem Biotechnol 25(2):125–132

    Article  CAS  Google Scholar 

  12. Kumar V, Sharma N, Sood H, Chauhan RS (2016) Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of Picrorhiza kurroa Royle ex Benth. Sci Rep 6:29750

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kawoosa T, Gahlan P, Devi AS, Kumar S (2014) The GATA and SORLIP motifs in the 3-hydroxy-3-methylglutaryl-CoA reductase promoter of Picrorhiza kurrooa for the control of light-mediated expression. Funct Integr Genomics 14(1):191–203

    Article  CAS  PubMed  Google Scholar 

  14. Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241(5):1255–1268

    Article  CAS  PubMed  Google Scholar 

  15. Shitiz K, Sharma N, Pal T, Sood H, Chauhan RS (2015) NGS Transcriptomes and Enzyme Inhibitors Unravel Complexity of Picrosides Biosynthesis in Picrorhiza kurroa Royle ex. Benth. PLoS One 10(12):e0144546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu L, White M, Macrae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262(2):247–257

    Article  CAS  PubMed  Google Scholar 

  17. Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6(5):430–440

    Article  CAS  PubMed  Google Scholar 

  18. Davuluri RV, Sun H, Palaniswamy S, Matthews N, Molina C, Kurtz, Grotewold E (2003) Agris: Arabidopsis gene regulatory Information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramachandran S, Hiratsuka K, Chua NH (1994) Transcription factors in plant growth and development. Curr Opin Genet Dev 4:642–646

    Article  CAS  PubMed  Google Scholar 

  20. Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  21. Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators. Phytochemistry 61(2):107–114

    Article  CAS  PubMed  Google Scholar 

  22. Latchman DS (2003) Eucaryotic transcription factors, 5th Edn. Academic Press, San Diego

    Google Scholar 

  23. Gantet P, Memelink J (2002) Transcription factors tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23(12):563–569

    Article  CAS  PubMed  Google Scholar 

  24. Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54(10):703–712

    Article  CAS  PubMed  Google Scholar 

  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  26. Sharma N, Chauhan RS, Sood H (2015) Seaweed extract as a novel elicitor and medium for mass propagation and picroside-I production in an endangered medicinal herb Picrorhiza kurroa. Plant Cell Tiss Org Cult 122(1):57–65

    Article  Google Scholar 

  27. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai X, Sinharoy S, Udvardi M, Zhao PX (2013) PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics 14:321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kaul K, Kumar S (2004) 26S rRNA-based internal control gene primer pair for reverse transcriptase-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem 335:330–333

    Article  CAS  PubMed  Google Scholar 

  31. Pandit S, Shitiz K, Sood H, Naik PK, Chauhan RS (2013) Expression pattern of fifteen genes of non-mevalonate (MEP) and mevalonate (MVA) pathways in different tissues of endangered medicinal herb Picrorhiza kurroa with respect to picrosides content. Mol Biol Rep 40(2):1053–1063

    Article  CAS  PubMed  Google Scholar 

  32. Lim CJ, Lee HY, Kim WB, Lee BS, Kim J, Ahmad R, Kim HA, Yi SY, Hur CG, Kwon SY (2012) Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues. Mol Cells 34(1):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar P, Pal T, Sharma N, Kumar V, Sood H, Chauhan RS (2015) Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle. Protoplasma 252(5):1253–1262

    Article  CAS  PubMed  Google Scholar 

  34. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucl Acids Res 26(1):358–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucl Acids Res 32(s1):D91–D94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta 1829(11):1236–1247

    Article  CAS  PubMed  Google Scholar 

  37. Sood H, Chauhan RS (2011) Different tissue culture parameters used for increased shoot biomass and its enrichment for a medicinal compound, Picroside-1 in an endangered herb, Picrorhiza kurroa Royle ex Benth. Res Bioscientia 2(4):13–22

    Google Scholar 

  38. Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S (2010) Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct Integr Genomics 10(3):393–404

    Article  CAS  PubMed  Google Scholar 

  39. Shohael AM, Ali MB, Yu KW, Hahn EJ, Paek KY (2006) Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tiss Org Cult 85(2):219–228

    Article  CAS  Google Scholar 

  40. Katoch M, Fazli IS, Suri KA, Ahuja A, Qazi GN (2011) Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the north western Himalayas. J Nat Med 65(3–4):578–582

    Article  CAS  PubMed  Google Scholar 

  41. Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149(2):851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siberil Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268(22):5655–5666

    Article  CAS  PubMed  Google Scholar 

  43. Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK (2014) Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep 4:3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nieuwenhuizen NJ, Chen X, Wang MY, Matich AJ, Perez RL, Allan AC, Green SA, Atkinson RG (2015) Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol 167(4):1243–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gigolashvili T, Yatusevich R, Berger B, Caroline Muller C, Flugge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51(2):247–261

    Article  CAS  PubMed  Google Scholar 

  46. Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heng W, Liu L, Wang M, Jia B, Liu P, Ye Z, Zhu L (2014) Differentially expressed genes related to the formation of russet fruit skin in a mutant of ‘Dangshansuli’ pear (Pyrus bretchnederi Rehd.) determined by suppression subtractive hybridization. Euphytica 196:285–297

    Article  CAS  Google Scholar 

  48. Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S (2015) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep 34(8):1365–1378

    Article  CAS  PubMed  Google Scholar 

  49. Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010) Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang ZL, Xie Z, Zou X, Casaretto J, Ho THD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134(4):1500–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S (2016) New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Mol Biol 90(1):63–76

    Article  CAS  PubMed  Google Scholar 

  52. Bhat WW, Razdan S, Rana S, Dhar N, Wani TA, Qazi P, Vishwakarma R, Lattoo SK (2014) A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors. Gene 547(2):245–256

    Article  CAS  PubMed  Google Scholar 

  53. Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Liu Y, Cai Y, Zhang F, Xia G, Xiang F (2010) Cloning and functional analysis of geraniol 10-hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci Biotechnol Biochem 74(8):1583–1590

    Article  CAS  PubMed  Google Scholar 

  55. Lois LM, Rodríguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22(6):503–513

    Article  CAS  PubMed  Google Scholar 

  56. Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphatesynthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Genet Genomics 210(3):437–442

    Article  CAS  Google Scholar 

  57. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7(7):907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bauer N, Fulgosi H, Jelaska S (2011) Over expression of phenylalanine ammonia-lyase in transgenic roots of Coleus blumei alters growth and rosmarinic acid synthesis. Food Technol Biotech 49(1):24–31

    CAS  Google Scholar 

  59. Ma QH, Wang C, Zhu HH (2011) TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes. Biochimie 93(7):1179–1186

    Article  CAS  PubMed  Google Scholar 

  60. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Corragio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Ministry of Science & Technology, Government of India, for providing research grant in the form of a program support on high value medicinal plants to RSC.

Author contributions

RSC, IV and HS conceived and designed the experiments. IV and TP performed the experiments and analyzed the data. IV was involved in writing the manuscript. RSC and HS revised the manuscript critically and finally approved the manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder S. Chauhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashisht, I., Pal, T., Sood, H. et al. Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis. Mol Biol Rep 43, 1395–1409 (2016). https://doi.org/10.1007/s11033-016-4073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4073-0

Keywords

Navigation