Skip to main content
Log in

Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, an efficient transformation system for gene delivery in date palm was established. The effects of different physical and biological parameters were optimized for transient transformation of uidA gene in somatic embryos of Estamaran cultivar. The tissues were bombarded with constructs harboring the uidA gene driven by CaMV 35S or rice Act1 promoter. Efficiency of expression was estimated by comparison of the number of blue spots resulted from GUS assay. Optimal transient expression was observed when explants were precultured on a media containing 0.4 M mannitol with air desiccation and bombarded at acceleration pressure of 1,350 psi, target distance of 6 cm with gold particles size of 0.6 µm which coated with 2.5 µg of DNA and at chamber vacuum pressure of 28 inHg. Significantly higher expression levels were obtained in tissues when the construct having the Act1 promoter was employed. After bombardment, somatic embryos were transferred to the regeneration media containing MS basal salts supplements with 3 mg/l 2ip, 40 mg/l adenine, 1 mg/l 2,4-d, 30 g/l sucrose and 3 g/l activated charcoal. Regenerated plantlets were checked by PCR using gene-specific primers. About 16 % of the plantlets were reported to be stably transformed. Southern analysis of genomic DNA from transformed plants showed that 1–2 gene (uidA) copies were integrated and GUS-negative plants did not contain any transgene. Achievement of these data considered as the first report of its kind is believed to facilitate transfer of desirable traits in date palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdullah R, Zainal A, Heng WY, Li LC, Phing LM, Sirajuddin SA, Ping WYS, Joseph JL (2005) Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq) genetic transformation studies. Electron J Biotechnol 8:15

    Article  Google Scholar 

  2. Abumahdi H, Kamenarova K, Todorovska E, Dimov G, Takumi S, Nakamura C, Anzai H, Atanassov A (2005) Effects of three promoters in barley transformation by particle bombardment of mature and immature embryos. Biotechnol Biotechnol Equip 19:63–69

    Article  Google Scholar 

  3. Ahmed MF, Kantharajah AS, Holford P (2012) Genetic transformation studies on Avocado Cultivar “Hass” (Persea americana). Am J Plant Sci 3:1225–1231

    Article  CAS  Google Scholar 

  4. Albuquerque EVS, Cunha WG, Barbosa AEAD, Costa PM, Teixeira JB, Vianna GR, Cabral GB, Fernandez D, Grossi-de-Sa MF (2009) Transgenic coffee fruits from Coffea arabica genetically modified by bombardment. In Vitro Cell Dev Biol Plant 45(5):532–539

    Article  CAS  Google Scholar 

  5. Basu C, Kausch AP, Luo H, Chandlee JM (2003) Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris). J Plant Physiol 160:1233–1239

    Article  CAS  PubMed  Google Scholar 

  6. Bhore SJ, Shah FH (2012) Genetic transformation of the American oil palm (Elaeis oleifera) immature zygotic embryos with antisense Palmitoyl-acyl carrier protein thioesterase (PATE) gene. World Appl Sci J 16(3):362–369

    CAS  Google Scholar 

  7. Briza J, Pavingerova D, Vlasak J, Niedermeierova H (2013) Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis. Acta Biochim Pol 60:395–400

    CAS  PubMed  Google Scholar 

  8. Carsono N, Yoshida T (2008) Transient expression of green fluorescent protein gene in rice callus: optimization of parameters for helios gene gun device. Plant Prod Sci 11:88–95

    Article  CAS  Google Scholar 

  9. Chandra R, Mishra M, Pati R, Agarwal S, Jain RK (2010) Shoot tip transformation in papaya (Carica papaya L.). Act Hort 851:219–226

    CAS  Google Scholar 

  10. Chavarri M, García AV, Zambrano AY, Gutiérrez Z, Demey JR (2010) Insertion of Agrobacterium rhizogenes rolB gene in mango. Interciencia 35(7):521–525

    Google Scholar 

  11. Chee WW, Jalil M, Abdullah MO, Othman RY, Khalid N (2005) Comarison of β-glucuronidase expression and anatomical localization in bombarded immature embryos of banana cultivar Mas via biolistic transformation. Asia Pas J Mol Biol Biotechnol 13:15–22

    Google Scholar 

  12. Dhekney SA, Litz RE, Moraga Amador DA, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) gene. In Vitro Cell Dev Biol Plant 43:195–202

    Article  CAS  Google Scholar 

  13. Deng XY, Wei ZM, An HL (2001) Transient peanut plants obtained by particle bombardment via embryogenesis system. Cell Res 11:156–160

    Article  CAS  PubMed  Google Scholar 

  14. Dugdale B, Beetham R, Becker DK, Harding RM, Dale JL (1998) Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in transgenic tobacco and banana cells. J Gen Virol 79:2301–2311

    CAS  PubMed  Google Scholar 

  15. Espinosa P, Lorenzo JC, Iglesias A, Yabor L, Menendez E, Borroto J, Henandez L, Arencibia AD (2002) Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21:136–140

    Article  CAS  Google Scholar 

  16. Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, José L, García-Martínez JL, Leandro Peña L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    Article  CAS  PubMed  Google Scholar 

  17. Ferry M, Gomez S (2002) The red palm weevil in the Mediterranean area. Palms (formerly Principes) 46:172–178

    Google Scholar 

  18. Filho JCB, Kobayashi AK, Pereira LFP, Galvao RM, Viera LGE (2003) Transient gene expression of β-glucuronidase in citrus thin epicotyls transversal sections using particle bombardment. Braz Arch Biol Technol 46:1–6

    Article  Google Scholar 

  19. Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tiss Organ Cult 84:1–16

    Article  Google Scholar 

  20. Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pecc SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 29:21–29

    Article  Google Scholar 

  21. Gangopadhyay G, Roy SK, Gangopadhyay SP, Mukherjee KK (2009) Agrobacterium-mediated genetic transformation of pineapple var. Queen using a novel encapsulation-based antibiotic selection technique. Plant Cell Tiss Organ Cult 97:295–302

    Article  CAS  Google Scholar 

  22. Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh A, Ganapathi TR, Nath P, Bapat VA (2009) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in an important Cavendish banana cv. Robusta (AAA). Plant Cell Tiss Organ Cult 97:31–39

    Article  Google Scholar 

  24. Gong S, Liu J (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tiss Organ Cult 113:137–147

    Article  CAS  Google Scholar 

  25. Harwood WA, Ross SM, Cilento P, Snape JW (2000) The effect of DNA/gold particle preparation technique and particle bombardment device on transformation of barely (Hordeum vulgare). Eupytica 111:67–76

    Article  CAS  Google Scholar 

  26. Hela S, Trifi M, Ould MSA, Rhouma A, Marrakchi M (2000) Rapid construction of random genomic library from date palm (Phoenix dactylifera L.). Plant Mol Biol Rep 17:1–7

    Google Scholar 

  27. Ismail RM, El-Domyati FM, Wagih EE, Sadik AS, Abdelsalam AZE (2011) Construction of banana bunchy top nanovirus-DNA-3 encoding the coat protein gene and its introducing into banana plants cv. Williams. J Genet Eng Biotechnol 9(1):35–41

    Article  CAS  Google Scholar 

  28. Janna OA, Maziah M, Ahmad Parveez GKA, Saleh K (2006) Factors affecting delivery and transient expression of β-glucuronidase gene in Dendrobium Sonia protocormlike-body. Afr J Biotechnol 5:88–94

    CAS  Google Scholar 

  29. Kadir APG (2008) Biolistic-mediated production of transgenic of oil palm. Methods Mol Biol 477:301–320

    Article  Google Scholar 

  30. Kadir APG, Subhi SM, Eng Ti LL (2010) A constitutive promoter for expressing foreign genes in plants: Translationally controlled tumor protein (TCTP). Mpob Inf Ser 449:4

    Google Scholar 

  31. Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96Ala and Ala183Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (B. napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26(1):95–104

    Article  CAS  PubMed  Google Scholar 

  32. Kanchanapoom K, Nekkaew A, Kachanapoom K, Phongdara A (2008) Determination of most efficient target tissue and helium pressure for biolistic transformation of oil palm (Elaeis guineensis Jacq.). Songkanakarin J Sci Technol 30:153–157

    Google Scholar 

  33. Khalafalla MM, Rahman SM, El-Shemy HA, Nakamoto Y, Wakasa K, Ishimoto M (2005) Optimization of particle bombardment conditions by monitoring of transient sGFP(S65T) expression in transformed soybean. Breed Sci 55:257–263

    Article  Google Scholar 

  34. Krishna H, Singh SK (2007) Biotechnology advances in mango (Mangifera indica L.) and their future implication in crop improvement. Biotech Adv 25:223–243

    Article  CAS  Google Scholar 

  35. Kruse C, Boehm R, Voeste D, Barth S, Schnabl H (2002) Transient transformation of Wolffia columbiana by particle bombardment. Aquat Bot 27:175–181

    Article  Google Scholar 

  36. Laimer M, Mendoca D, Maghuly F, Marzban G, Leopold S, Khan M, Balla I, Katinger H (2005) Biotechnology of temperate fruit trees and grapevines. Act Biochim Pol 52:673–678

    CAS  Google Scholar 

  37. Lawton R, Winfield S, Daniell H, Bhagsari AS, Dhir SK (2000) Expression of green-fluorescent protein gene in sweet potato tissues. Plant Mol Biol Report 18:139a–139i

    Article  Google Scholar 

  38. Litz RE, Gomez-Lim MA (2002) Genetic transformation of mango. In: Khachatourians G, McHugern A, Scorza R, Nip WK, Hui YH (eds) Transgenic plants and crops. Marcel Dekker, New York, pp 421–436

    Google Scholar 

  39. Litz RE, Witjaksono (2002) Avocado transformation. In: Khachatourians G, McHugern A, Scorza R, Nip WK, Hui YH (eds) Transgenic plants and crops. Marcel Dekker, New York, pp 345–358

    Google Scholar 

  40. Lee MP, Yeun LH, Abdullah R (2006) Expression of Bacillus thuringiensis insecticidal protein gene in transgenic oil palm. Electron J Biotechnol 9:15

    Article  CAS  Google Scholar 

  41. Lopez M, Humara JM, Rodriguez R, Ordas RJ (2000) Transient uidA gene expresion in electroporated cotyledonary protoplasts of Pinus nigra ssp. Salzmannii and in bombarded cotyledons. Can J Res 30:448–455

    Article  CAS  Google Scholar 

  42. Mahatre M (2013) Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.). Methods Mol Biol 11013:435–453

    Google Scholar 

  43. Manuel R, Gonzalez MV, Ordas RJ, Tavazza R, Ancora G (1996) Factors affecting transient gene expression in cultured radiate pine cotyledons following particle bombardment. Physiol Plant 96:630–636

    Article  Google Scholar 

  44. McElroy D, Zhng W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Mousavi M, Mousavi A, Habashi AA, Arzani K (2009) Efficient transformation and expression of gus gene in Somatic Embryos of date palm (Phoenix dactylifera L.) via particle bombardment. Afr J Biotechol 8:3721–3730

    CAS  Google Scholar 

  46. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  47. Nagaty AM, Belal AEFH, El-Deeb MD, Sourour MM, Metry EA (2007) Production of genetically modified peach (Prunus persica L. batsch) El-Sheikh Zewaied cultivar plants. J Appl Sci Res 3:1600–1608

    CAS  Google Scholar 

  48. Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA (2008) A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. Plant Cell Rep 27:1451–1459

    Article  CAS  PubMed  Google Scholar 

  49. Onde S, Sancak C, Altinok Birsin M, Ozgen M (2001) Transient expression of β-glucuronidase reporter gene in sainfoin (Onobrychis viciifolia scop.) cotyledons via microprojectile bombardment. Turk J Biol 25:171–176

    CAS  Google Scholar 

  50. Petrillo CP, Carneiro NP, Purcino AAC, Carvalho CHS, Alves JD, Carneiro AA (2008) Optimization of particle bombardment parameters for genetic transformation of Brazilian maize inbred lines. Pesq Agropec Bars Brasilia 43:371–378

    Article  Google Scholar 

  51. Quenzar B, Hartmann C, Rode A, Benslimane AA (1998) Date palm DNA minipreparation without liquid nitrogen. Plant Mol Biol Rep 16:263–269

    Article  Google Scholar 

  52. Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Rep 19:118–127

    Article  CAS  Google Scholar 

  53. Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil Jl, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica L. is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Rubio S, Jouve N, Gonzales JM (2005) Biolistic and Agrobacterium-mediated transient expression of uidA in triticale immature embryos. In: Czech J Genet Plant Breed 41: Proceedings of 5th International Triticeae Symposium

  55. Ruma D, Dhaliwal MS, Kaur A, Gosal SS (2009) Transformation of tomato using biolistic gun for transient expression of the β-glucuronidase gene. Indian J Biotechnol 8:363–369

    CAS  Google Scholar 

  56. Sanford J, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  CAS  PubMed  Google Scholar 

  57. Schenk PM, Elliott AR, Manners JM (1998) Assessment of transient gene expression in plant tissues using the green fluorescent protein reference. Plant Mol Biol Rep 16:313–322

    Article  CAS  Google Scholar 

  58. Shawkat A, Mannan A, Oirdi ME, Waheed A, Mirza B (2012) Agrobacterium-mediated transformation of rough lemon (Citrus jambhiri Lush) with yeast HAL2 gene. BMC Res Notes 5:285

    Article  Google Scholar 

  59. Sreeramanan S, Maziah M, Abdullah MP, Sariah M, Xavier R, Nor’Aini MF (2005) Physical and biological parameters affecting transient GUS and GFP expression in banana via particle bombardment. Asia Pac J Biol Biotechnol 13:35–57

    Google Scholar 

  60. Sreeramanan S, Maziah M, Abdullah MP, Rosli NM, Xavier R (2006) Potential selectable marker for genetic transformation in banana. Biotechnol 5:189–197

    Article  Google Scholar 

  61. Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30:425–436

    Article  CAS  PubMed  Google Scholar 

  62. Taha AM, Wagiran A, Ghazali H, Huyop F, Parveez GKA (2009) Optimization and transformation of garden balsam, Impatiens balsamina, mediated by microprojectile bombardment. Biotechnol 8:1–12

    Article  CAS  Google Scholar 

  63. Tripathi JN, Muwonge A, Tripathi L (2012) Efficient regeneration and transformation of plantain cv. “Gonja manjaya” (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cell Dev Biol Plant 48:216–224

  64. Tuan VD, Garg GK (2001) Gene transformation in Brassica sp. using particle bombardment technique. Omonrice 9:36–40

    Google Scholar 

  65. Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–67

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Chen X, Peng S, Wu K, Hong L (2013) Genetic transformation and regeneration of Hevea brasiliensis transgenic plant with GAI gene by microparticle bombardment. Rom Biotech Lett 18:7910–7919

    CAS  Google Scholar 

  67. Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5:245–254

    Article  Google Scholar 

  68. Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the International Center for Genetic Engineering and Biotechnology (ICGEB), CRP/IRA03-02(b). Special thanks should be given to Mr. Alimardan Rostami for his practical assistance and Dr. Parvin Shariati for her useful and constructive comments on this manuscript. Our special thanks are extended to the Date Palm and Tropical Fruit Research Institute of Iran for providing the offshoots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, M., Mousavi, A., Habashi, A.A. et al. Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment. Mol Biol Rep 41, 8185–8194 (2014). https://doi.org/10.1007/s11033-014-3720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3720-6

Keywords

Navigation