Skip to main content

Biolistic Mediated Production of Transgenic Oil Palm

  • Protocol
Advanced Protocols in Oxidative Stress I

Part of the book series: Methods In Molecular Biology ((MIMB,volume 477))

Abstract

Physical and biological parameters affecting DNA delivery into oil palm embryogenic calli using the biolistic device are optimized. Five different promoters are also evaluated to identify the most suitable promoter for use in oil palm transformation. Finally, the effectiveness of kanamycin, geneticin (G418), neomycin, hygromycin, and herbicide Basta as selection agents to inhibit growth of oil palm embryogenic calli is evaluated. Combination of optimized parameters, best promoter and selection agent is later used to transform oil palm embryogenic calli for producing transgenic oil palm plants. Bombarded embryogenic calli are exposed to 50 mg/l of Basta after 3 weeks. Basta-resistant embryogenic calli started to emerge five to six months in medium containing Basta. The Basta-resistant embryogenic calli are proliferated until they reach a specific size, and the Basta-resistant calli are later individually isolated and regenerated to produce complete plantlets. The complete regenerated plantlets are evaluated for the presence of transgenes by PCR, Southern and thin layer chromatography analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anon (2007). Review of the Malaysian Oil Palm Industry 2006 – MPOB Empowering Change, Economics and Industry Deve-lopment Division, Malaysian Palm Oil Board, Kelana Jaya, Selangor, Malaysia, pp.95.

    Google Scholar 

  2. Parveez, G. K. A. (2000). Production of transgenic oil palm (Elaeis guineensis Jacq.) using biolistic techniques, in Molecular Biology of Woody Plants (Jain S. M. and Minocha. S. C., eds.), Kluwer Academic Publishers, Netherlands, Vol. 2, pp. 327–350.

    Google Scholar 

  3. Parveez, G. K. A., Chowdhury, M. K. U. and Saleh, N. M. (1994). Current status of genetic engineering of oil bearing crops. Asia Pac. J. Mol. Biol. Biotechnol. 3, 174–192.

    Google Scholar 

  4. Cheah, S. C., Sambanthamurthi, R., Siti Nor Akmar, A., Abrizah, O., Manaf, M.A.A., Umi Salamah, R. and Parveez, G. K. A. (1995). Towards genetic engineering of oil palm, in Plant Lipid Metabolism (Kader, J. C. and Mazliak, P., eds.), Kluwer Academic Publishers, Netherlands, pp. 570–572.

    Google Scholar 

  5. Sambanthamurthi, R., Siti Nor Akmar, A. and Parveez, G. K. A. (2002). Genetic manipulation of the oil palm – Challenges and prospects. The Planter 78(919), 547–562.

    Google Scholar 

  6. Parveez, G. K. A. (2003). Novel products from transgenic oil palm. AgBiotechNet 5 (ABN113), 1–8.

    Google Scholar 

  7. Gruber, M. Y. and Crosby, W. L. (1993). Vectors for plant transformation, in Methods in Plant Molecular Biology and Biotechnology (Glick B. R. and Thompson J. E., eds.) CRC Press, Boca Raton, pp. 89–119.

    Google Scholar 

  8. Braun, A. C. (1952). Conditioning of the host cell as a factor in the transformation process in crown gall. Growth 16, 65–74.

    CAS  PubMed  Google Scholar 

  9. Fromm, M. E., Taylor, L. P. and Walbot, V. (1986). Stable transformation of maize after electroporation. Nature 319, 791–793.

    Article  CAS  PubMed  Google Scholar 

  10. Sanford, J. C., Klein, T. M., Wolf, E. D. and Allen, N. (1987). Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Tech. 5, 27–37.

    Article  CAS  Google Scholar 

  11. Potrykus, I. (1991). Gene transfer to plants – assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 205–225.

    Article  CAS  Google Scholar 

  12. Gould, J., Devey, M., Hasegawa, O., Ulian, E. C., Peterson, G. and Smith, R. H. (1991). Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95, 426–434.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, M.T., Chang, H. H., Ho, S. L., Tong, W. F. and Yu, S. M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimearic α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22, 491–506.

    Article  PubMed  Google Scholar 

  14. Hiei, Y., Otho, S., Komari, T. and Kumasho, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J. 6, 271–282.

    Article  CAS  Google Scholar 

  15. Rashid, H., Yokoi, S., Toriyama, K. and Hinata, K. (1996). Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep. 15, 727–730.

    Article  CAS  Google Scholar 

  16. Ishida, Y., Saito, H., Otho, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) Mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14, 745–750.

    Article  CAS  Google Scholar 

  17. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Brittell, R. (1997). Agrobacterium tumefaciens-mediated barley transformation. The Plant J. 11, 1369–1376.

    Article  CAS  Google Scholar 

  18. Spencer, T. M., O’Brien, J. V., Start, W. G. and Adams, T. R. (1992). Segregation of transgenes in maize. Plant Mol. Biol. 18, 201–210.

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava, V., Vasil, V. and Vasil, I. K. (1996). Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor. Appl. Genet. 92, 1031–1037.

    Article  CAS  Google Scholar 

  20. Zhang, S., Warkentin, D., Sun, B., Zhong, H. and Sticklen, M. (1996). Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92, 752–761.

    Article  CAS  Google Scholar 

  21. Gordon–Kamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., O’Brien, J. V., Chambers, S. A., Adams, W. R., Willets, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P. and Lemaux, P. G. (1990). Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2, 603–618.

    Article  PubMed  Google Scholar 

  22. Vasil, V., Brown, S. M., Re, D., Fromm, E. M. and Vasil, I. K. (1991). Transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat, Biotechnology 9, 743–747.

    Article  CAS  Google Scholar 

  23. Bower, R. and Birch. R. G. (1992). Transgenic sugarcane plants via microprojectile bombardment, The Plant J. 2, 409–416.

    Article  CAS  Google Scholar 

  24. Parveez, G. K. A., Chowdhury, M. K. U. and Saleh, N. M. (1994). Current status of genetic engineering in oil bearing crops. AsPac. J. Mol. Biol. Biotechnol. 2, 174–192.

    Google Scholar 

  25. Murashige, T. and Skoog, T. (1962). A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  26. Eeuwens, C. J. (1976). Mineral requirement for growth and callus initiation of tissue explants from mature coconut palms (Cocos nucufera) cultured in vitro. Physiol. Plant 36, 23–28.

    Article  CAS  Google Scholar 

  27. Doyle, J. J. and Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15.

    Google Scholar 

  28. Sambrook, J., Fritsch E. F. and Maniatis T. (eds.) (1989). Molecular Cloning – A Laboratory Manual. Cold Spring Harbor, New York.

    Google Scholar 

  29. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  CAS  PubMed  Google Scholar 

  30. Feinberg, A. P. and Vogelstein, B. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267.

    Article  CAS  PubMed  Google Scholar 

  31. DeBlock, M., Botterman, J., Vanderwiele, M., Montagu, M. and Leemans, J. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6, 2513–2518.

    CAS  Google Scholar 

  32. Castillo, A. M., Vasil, V. and Vasil, I. K. (1994). Rapid production of fertile transgenic plants of rye (Secale cereale L.). Biotechnology 12, 1366–1371.

    Article  CAS  Google Scholar 

  33. Jefferson, R. A., Kavanagh, T. A. and Beven, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in plants. EMBO J. 6, 3901–3907.

    CAS  PubMed  Google Scholar 

  34. Sanford, J., Smith, F. D. and Russel, J. A. (1993). Optimizing the biolistic process for different biological applications. Meth. Enzymol. 217, 483–509.

    Article  CAS  PubMed  Google Scholar 

  35. Christou, P., McCabe, D. E., Martinell, B. J. and Swain W. F. (1990). Soybean genetic engineering – commercial production of transgenic plants. Trends In Biotechnol. 8, 145–151.

    Article  CAS  Google Scholar 

  36. Imaseki, H. (1986). Ethylene, in Chemistry of Plant Hormones (Takahashi, N. ed.), CRC Press, Boca Raton, pp. 249–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kadir Ahmad Parveez, G. (2008). Biolistic Mediated Production of Transgenic Oil Palm. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress I. Methods In Molecular Biology, vol 477. Humana Press. https://doi.org/10.1007/978-1-60327-517-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-517-0_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-218-6

  • Online ISBN: 978-1-60327-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics