Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Genetic polymorphisms in the CYP1A1 and CYP1B1 genes and susceptibility to bladder cancer: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This article was retracted on 18 August 2015

Abstract

The current meta-analysis of case–control studies was conducted to evaluated the relationships of genetic polymorphisms in the CYP1A1 and CYP1B1 genes with the susceptibility to bladder cancer, aiming at determine whether these polymorphisms may contribute to the pathogenesis of bladder cancer. Related articles were determined via searching the following electronic databases without any language restrictions: PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases for relevant articles published before November 1st, 2013. STATA 12.0 software was also selected to deal with statistical data. The relationships were evaluated using the pooled odds ratios (ORs) and their 95 % confidence intervals (CI). Eleven case–control studies with a total of 2,609 bladder cancer patients and 2,634 healthy subjects met the inclusion criteria. The results of our meta-analysis demonstrated that CYP1A1 genetic polymorphisms were associated with increased risks of bladder cancer (allele model: RR = 1.18, 95 % CI 1.07–1.30, P = 0.001; dominant model: RR = 1.15, 95 % CI 1.05–1.27, P = 0.003; respectively), especially among 11599G>C, 2455A>G, 3810T>C, and 113T>C polymorphisms. A subgroup analysis by ethnicity was conducted to investigate its effect on susceptibility to bladder cancer. The subgroup analysis results revealed positive significant correlations between CYP1A1 genetic polymorphisms and bladder cancer risk among Asians (allele model: RR = 1.26, 95 % CI 1.10–1.44, P = 0.001; dominant model: RR = 1.22, 95 % CI 1.08–1.38, P = 0.001), but not among Caucasians (all P < 0.05). Nevertheless, we observed no significant correlations between CYP1B1 genetic polymorphisms and bladder cancer risk (all P > 0.05). Our meta-analysis indicates that CYP1A1 genetic polymorphisms may be involved in the pathogenesis of bladder cancer, especially among 11599G>C, 2455A>G, 3810T>C, and 113T>C polymorphisms. However, CYP1B1 genetic polymorphisms may not be important determinants of bladder cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu H, Wang M, Zhang Z (2013) Bladder cancer epidemiology and genetic susceptibility. J Biomed Res 27(3):170–178. doi:10.7555/JBR.27.20130026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, Zhou L, He M, Li Z, Sun X, Jia W, Chen J, Yang S, Zhou F, Zhao X, Wan S, Ye R, Liang C, Liu Z, Huang P, Liu C, Jiang H, Wang Y, Zheng H, Sun L, Liu X, Jiang Z, Feng D, Wu S, Zou J, Zhang Z, Yang R, Zhao J, Xu C, Yin W, Guan Z, Ye J, Zhang H, Li J, Kristiansen K, Nickerson ML, Theodorescu D, Li Y, Zhang X, Li S, Wang J, Yang H, Cai Z (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43(9):875–878. doi:10.1038/ng.907

    Article  CAS  PubMed  Google Scholar 

  3. Sutherland M, Gill JH, Loadman PM, Laye JP, Sheldrake HM, Illingworth NA, Alandas MN, Cooper PA, Searcey M, Pors K, Shnyder SD, Patterson LH (2013) Antitumor activity of a duocarmycin analogue rationalized to be metabolically activated by cytochrome P450 1A1 in human transitional cell carcinoma of the bladder. Mol Cancer Ther 12(1):27–37. doi:10.1158/1535-7163.MCT-12-0405

    Article  CAS  PubMed  Google Scholar 

  4. Feng C, Guan M, Ding Q, Zhang Y, Jiang H, Wen H, Wang P, Wu Z (2011) Expression of pigment epithelium-derived factor in bladder tumour is correlated with interleukin-8 yet not with interleukin-1alpha. J Huazhong Univ Sci Technolog Med Sci 31(1):21–25. doi:10.1007/s11596-011-0144-6

    Article  CAS  PubMed  Google Scholar 

  5. Pavanello S, Mastrangelo G, Placidi D, Campagna M, Pulliero A, Carta A, Arici C, Porru S (2010) CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol 25(7):491–500. doi:10.1007/s10654-010-9479-8

    Article  CAS  PubMed  Google Scholar 

  6. Huang M, Dinney CP, Lin X, Lin J, Grossman HB, Wu X (2007) High-order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol Biomarkers Prev 16(1):84–91. doi:10.1158/1055-9965.EPI-06-0712

    Article  CAS  PubMed  Google Scholar 

  7. Wu X, Gu J, Grossman HB, Amos CI, Etzel C, Huang M, Zhang Q, Millikan RE, Lerner S, Dinney CP, Spitz MR (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464–479. doi:10.1086/500848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Volanis D, Kadiyska T, Galanis A, Delakas D, Logotheti S, Zoumpourlis V (2010) Environmental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett 193(2):131–137. doi:10.1016/j.toxlet.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  9. Azoulay L, Yin H, Filion KB, Assayag J, Majdan A, Pollak MN, Suissa S (2012) The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case–control study. BMJ 344:e3645. doi:10.1136/bmj.e3645

    Article  PubMed Central  PubMed  Google Scholar 

  10. Berber U, Yilmaz I, Yilmaz O, Haholu A, Kucukodaci Z, Ates F, Demirel D (2013) CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev 14(6):3925–3929

    Article  PubMed  Google Scholar 

  11. Ozturk T, Kahraman OT, Toptas B, Kisakesen HI, Cakalir C, Verim L, Ozturk O, Isbir T (2011) The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. Vivo 25(4):663–668

    CAS  Google Scholar 

  12. Giri SK, Yadav A, Kumar A, Dev K, Gulati S, Gupta R, Aggarwal N, Gautam SK (2013) Polymorphic variation of CYP1A1 and CYP1B1 Genes in a Haryana population. Biochem Genet 51(11–12):853–864. doi:10.1007/s10528-013-9612-y

    Article  CAS  PubMed  Google Scholar 

  13. Sridhar J, Jin P, Liu J, Foroozesh M, Stevens CL (2010) In silico studies of polyaromatic hydrocarbon inhibitors of cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. Chem Res Toxicol 23(3):600–607. doi:10.1021/tx900348v

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Durocher F, Morissette J, Simard J (1998) Genetic linkage mapping of the CYP11A1 gene encoding the cholesterol side-chain cleavage P450scc close to the CYP1A1 gene and D15S204 in the chromosome 15q22.33–q23 region. Pharmacogenetics 8(1):49–53

    Article  CAS  PubMed  Google Scholar 

  15. Stoilov I, Akarsu AN, Sarfarazi M (1997) Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 6(4):641–647

    Article  CAS  PubMed  Google Scholar 

  16. Nandekar PP, Sangamwar AT (2012) Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings. Expert Opin Drug Discov 7(9):771–789. doi:10.1517/17460441.2012.698260

    Article  CAS  PubMed  Google Scholar 

  17. Beedanagari SR, Bebenek I, Bui P, Hankinson O (2009) Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol Sci 110(1):61–67. doi:10.1093/toxsci/kfp079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fontana L, Delort L, Joumard L, Rabiau N, Bosviel R, Satih S, Guy L, Boiteux JP, Bignon YJ, Chamoux A, Bernard-Gallon DJ (2009) Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Res 29(5):1631–1635

    CAS  PubMed  Google Scholar 

  19. Cash HL, Tao L, Yuan JM, Marsit CJ, Houseman EA, Xiang YB, Gao YT, Nelson HH, Kelsey KT (2012) LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese. Int J Cancer 130(5):1151–1159. doi:10.1002/ijc.26098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Grando JP, Kuasne H, Losi-Guembarovski R, Sant’ana Rodrigues I, Matsuda HM, Fuganti PE, Gregorio EP, Junior FL, de Menezes RP, de Freitas Rodrigues MA, de Syllos Colus IM (2009) Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med 9(1):21–28. doi:10.1007/s10238-008-0015-z

    Article  CAS  PubMed  Google Scholar 

  21. Rendic S, Guengerich FP (2012) Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol 25(7):1316–1383. doi:10.1021/tx300132k

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Salinas-Sanchez AS, Donate-Moreno MJ, Lopez-Garrido MP, Gimenez-Bachs JM, Escribano J (2012) Role of CYP1B1 gene polymorphisms in bladder cancer susceptibility. J Urol 187(2):700–706. doi:10.1016/j.juro.2011.10.063

    Article  CAS  PubMed  Google Scholar 

  23. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. doi:10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  24. Zintzaras E, Ioannidis JP (2005) HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics 21(18):3672–3673. doi:10.1093/bioinformatics/bti536

    Article  CAS  PubMed  Google Scholar 

  25. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. JAMA 295(6):676–680. doi:10.1001/jama.295.6.676

    Article  CAS  PubMed  Google Scholar 

  26. Brockmoller J, Cascorbi I, Kerb R, Roots I (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56(17):3915–3925

    CAS  PubMed  Google Scholar 

  27. Fu J, Chen BC (2013) Relationship between genetic polymorphisms of CYP1A1, NQO1 and EPHX1 and susceptibility to bladder cancer. Chin J Cancer Prev Treatment 20(01):10–14

    CAS  Google Scholar 

  28. Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, di Carlo AS, Porru S (2004) GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 110(4):598–604. doi:10.1002/ijc.20157

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava DS, Mandhani A, Mittal RD (2008) Genetic polymorphisms of cytochrome P450 CYP1A1 (*2A) and microsomal epoxide hydrolase gene, interactions with tobacco-users, and susceptibility to bladder cancer: a study from North India. Arch Toxicol 82(9):633–639. doi:10.1007/s00204-007-0276-4

    Article  CAS  PubMed  Google Scholar 

  30. Villanueva CM, Silverman DT, Murta-Nascimento C, Malats N, Garcia-Closas M, Castro F, Tardon A, Garcia-Closas R, Serra C, Carrato A, Rothman N, Real FX, Dosemeci M, Kogevinas M (2009) Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes Control 20(1):121–127. doi:10.1007/s10552-008-9226-6

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yang LX, Zhang HF, Cui WP, Bai SF (2007) Analysis of the polymorphism of CYP1A1-MSPI gene in patients with bladder cancer. China Practical Med 02(26):3–5

    Google Scholar 

  32. Turesky RJ, Le Marchand L (2011) Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 24(8):1169–1214. doi:10.1021/tx200135s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Delescluse C, Lemaire G, de Sousa G, Rahmani R (2000) Is CYP1A1 induction always related to AHR signaling pathway? Toxicology 153(1–3):73–82

    Article  CAS  PubMed  Google Scholar 

  34. Stejskalova L, Pavek P (2011) The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbon receptor (AhR) in the placenta. Curr Pharm Biotechnol 12(5):715–730

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad ST, Arjumand W, Seth A, Nafees S, Rashid S, Ali N, Hamiza OO, Sultana S (2013) Risk of renal cell carcinoma and polymorphism in phase I xenobiotic metabolizing CYP1A1 and CYP2D6 enzymes. Urol Oncol 31(7):1350–1357. doi:10.1016/j.urolonc.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  36. Masek V, Anzenbacherova E, Etrych T, Strohalm J, Ulbrich K, Anzenbacher P (2011) Interaction of N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates with human liver microsomal cytochromes P450: comparison with free doxorubicin. Drug Metab Dispos 39(9):1704–1710. doi:10.1124/dmd.110.037986

    Article  CAS  PubMed  Google Scholar 

  37. Young CH, Lo YL, Tsai YY, Shih TS, Lee H, Cheng YW (2010) CYP1A1 gene polymorphisms as a risk factor for pterygium. Mol Vis 16:1054–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Chen CM, Jin YT, Xu HY, Zhang CY, Zhang H, Zhang WM, Tan C, Sun XY (2012) Effects of CYP1A1 and GSTM1 gene polymorphisms and BPDE-DNA adducts on lung cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 29(1):23–27. doi:10.3760/cma.j.issn.1003-9406.2012.01.007

    CAS  PubMed  Google Scholar 

  39. Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9:187. doi:10.1186/1471-2407-9-187

    Article  PubMed Central  PubMed  Google Scholar 

  40. Vondracek J, Krcmar P, Prochazkova J, Trilecova L, Gavelova M, Skalova L, Szotakova B, Buncek M, Radilova H, Kozubik A, Machala M (2009) The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells. Chem Biol Interact 180(2):226–237. doi:10.1016/j.cbi.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  41. Gregoraszczuk EL, Ptak A, Wrobel A (2011) The ability of hydroxylated estrogens (2-OH-E2 and 4-OH-E2) to increase of SHBG gene, protein expression and intracellular levels in MCF-7 cells line. Endocr Regul 45(3):125–130

    Article  CAS  PubMed  Google Scholar 

  42. Gajjar K, Owens G, Sperrin M, Martin-Hirsch PL, Martin FL (2012) Cytochrome P1B1 (CYP1B1) polymorphisms and ovarian cancer risk: a meta-analysis. Toxicology 302(2–3):157–162. doi:10.1016/j.tox.2012.09.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xia Zhao.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

About this article

Cite this article

Chen, YZ., Li, J., Zhao, YX. et al. RETRACTED ARTICLE: Genetic polymorphisms in the CYP1A1 and CYP1B1 genes and susceptibility to bladder cancer: a meta-analysis. Mol Biol Rep 41, 4929–4940 (2014). https://doi.org/10.1007/s11033-014-3359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3359-3

Keywords

Navigation